A nuclear membrane-associated DNA complex in cultured mammalian cells capable of synthesizing DNA in vitro. 1976

A A Infante, and W Firshein, and P Hobart, and L Murray

A DNA-nuclear membrane complex has been isolated by two different methods from the nuclei of cultured mouse fibroblast (3T3) cells. One method, utilizing the detergent sarkosyl (sodium lauroyl sarkosinate), yields a DNA-nuclear membrane complex (the M band), which contains virtually all of the DNA in the nuclei. However, treatment of the M band by sonication, vortexing, or freeze-thaw reduces the amount of DNA in the complex by approximately 50-80%, depending upon the phase of the cell cycle from which the complex was extracted. The remaining DNA is tightly bound to the nuclear membrane and resists further shearing procedures. Over 90% of the choline-labeled phospholipid present in nuclei is also found in these sheared M bands. The percentage of DNA associated with the nuclear membrane varies during the cell cycle and correlates well with the onset, continuation, and cessation of DNA synthesis. Thus, although DNA-membrane complexes can be detected throughout the cell cycle, the percentage of DNA bound to membrane increases during late G1 and S and decreases during G2. In addition, there are distinct qualitative differences in the type of DNA present in the membrane fraction, with a more highly d(A-T) rich DNA being present in confluent (G0) cells than in cells during the S phase. This d(A-T) rich DNA may be related to the mouse satellite DNA identified by others. The M band can be separated into two DNA-nuclear membrane subfractions by centrifugation through a continuous sucrose gradient. The relative proportions of these two subfractions depend upon the percentage of sarkosyl present in the M band prior to centrifugation, with complete removal of sarkosyl resulting in a very large increase in the sedimentation velocity of the complex and in the formation of only one fraction. Evidence that this is a complex of DNA with membrane is given by the finding that DNA is dissociated from the complex with Pronase, deoxycholate, or high levels of sarkosyl. Removal of virtually all of the DNA with DNase from this rapidly sedimenting complex does not dissociate any of the phospholipid which still sediments rapidly as a single band. A second method, which yields a DNA-membrane fraction from nuclei, utilizes sedimentation of lysed nuclei to equilibrium in CsCl density gradients. This low-density CsCl fraction contains only 10-15% of the total DNA, but contains most of the nascent DNA, which may be chased into a membrane-free fraction. The DNA-membrane fraction from CsCl gradients possesses properties in common with the M-band fraction and can be converted into an M band. DNA membrane complexes from sucrose gradients, as well as the crude M-band preparation and a non-membrane-associated DNA fraction from nuclei can synthesize DNA in vitro without the addition of an external DNA template or DNA polymerase. In contrast to the activity in the non-membrane-associated DNA fraction, the membrane-associated polymerase activity is strongly stimulated by adenosine triphosphate and is unaffected by ethidium bromide...

UI MeSH Term Description Entries
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D013010 Sonication The application of high intensity ultrasound to liquids. Sonications

Related Publications

A A Infante, and W Firshein, and P Hobart, and L Murray
February 1982, Biochimica et biophysica acta,
A A Infante, and W Firshein, and P Hobart, and L Murray
August 1977, Biochemical and biophysical research communications,
A A Infante, and W Firshein, and P Hobart, and L Murray
April 1965, The Journal of cell biology,
A A Infante, and W Firshein, and P Hobart, and L Murray
September 1977, Cell and tissue research,
A A Infante, and W Firshein, and P Hobart, and L Murray
September 1968, The Biochemical journal,
A A Infante, and W Firshein, and P Hobart, and L Murray
March 1977, Biochimica et biophysica acta,
A A Infante, and W Firshein, and P Hobart, and L Murray
April 1988, Biochimica et biophysica acta,
A A Infante, and W Firshein, and P Hobart, and L Murray
October 1968, Biophysical journal,
A A Infante, and W Firshein, and P Hobart, and L Murray
December 2011, Science signaling,
A A Infante, and W Firshein, and P Hobart, and L Murray
November 1969, Experimental cell research,
Copied contents to your clipboard!