Membrane microviscosity and human platelet function. 1976

S J Shattil, and R A Cooper

An increased sensitivity to epinephrine-induced aggregation has been observed both in platelets obtained from patients with type IIa hyperlipoproteinemia and in normal platelets following incubation with cholesterol-rich lecithin dispersions. We have reported previously that the membrane fraction of platelets is enriched with cholesterol relative to phospholipid under each of these conditions. To further explore the effect of cholesterol on platelet membranes, we have examined the fluidity (microviscosity) of whole platelets and platelet subcellular fractions using a hydrophobic fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), under conditions in which the cholesterol-to-phospholipid mole ratio (C/PL) of platelets was varied by incubation with various cholesterol-lecithin sonicated dispersions. The C/PL of platelets directly influenced the rotational diffusion of DPH, as indicated by changes in fluorescence polarization. This was reflected in an increase in microviscosity at 37 degrees C (ETA37) from 2.84 P in normal platelets to 4.06 P in platelets with a 118% increase in C/PL. Conversely, platelets with a 43% decrease in C/PL had a 13% decrease in eta37. A strong correlation (r = 0.94) existed between C/PL and eta37 throughout this entire range. However, C/PL had no effect on the excited-state fluorescence lifetime of DPH. Both C/PL and eta37 were lower in isolated platelet membranes than in the platelet granule fraction. When platelets were incubated for 20 h with cholesterol-rich dispersions, there was an increase in C/PL and eta37 in both the membrane and granule fractions. However, this occurred more rapidly in membranes so that, at 5 h (a time when an increased sensitivity of whole platelets to epinephrine is evident), membrane C/PL had increased 55% and eta37 had increased 42%, whereas granule C/PL and eta37 had changed minimally. Cholesterol-rich platelets and subcellular fractions had a lower fusion (or flow) activation energy for viscosity (deltaE), reflecting a higher degree of order, and the converse was true in cholesterol-poor platelets. Moreover, a strong negative correlation existed between the percent change in deltaE and the percent change in eta37 induced either by cholesterol incorporation or depletion. These data demonstrate that cholesterol influences the fluidity and the degree of order within the hydrophobic core of platelet membranes. Changes induced in these physical properties by an excess of cholesterol relative to phospholipid may underlie the abnormal reception or transmission of the aggregation stimulus in cholesterol-rich platelets.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

S J Shattil, and R A Cooper
March 1994, American journal of hypertension,
S J Shattil, and R A Cooper
March 1991, Clinical science (London, England : 1979),
S J Shattil, and R A Cooper
February 1978, British journal of haematology,
S J Shattil, and R A Cooper
March 1994, Clinical science (London, England : 1979),
S J Shattil, and R A Cooper
January 1978, Biochemical and biophysical research communications,
S J Shattil, and R A Cooper
September 1997, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde,
S J Shattil, and R A Cooper
January 1981, Hormone and metabolic research. Supplement series,
S J Shattil, and R A Cooper
October 1972, Biochimica et biophysica acta,
Copied contents to your clipboard!