Factor X activating enzyme from Russell's viper venom: isolation and characterization. 1976

W Kisiel, and M A Hermodson, and E W Davie

The protease from Russell's viper venom that activates factor X (Stuart factor), factor IX (Christmas factor), and protein C was purified by gel filtration on Sephadex G-150 and QAE-Sephadex A-50 column chromatography. The purified enzyme migrated as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 79 000. A minimal molecular weight of 78 500 +/- 800 was determined by sedimentation equilibrium in the presence of 6 M guanidine hydrochloride. Upon reduction with 2-mercaptoethanol, a heavy chain (mol wt 59 000) and a light chain were observed. The light chain migrated as a single band (mol wt 19 000) in 7.5% polyacrylamide-sodium dodecyl sulfate gels but appeared as a doublet (mol wt 18 000 and 20 000) in 10% polyacrylamide-sodium dodecyl sulfate gels. The amino-terminal end of the heavy chain was heterogeneous and contained isoleucine, valine and serine. The amino-terminal sequence of the light chain was Val-Leu-Asp. The factor X activator contained 13% carbohydrate including 6.0% hexose, 1.7% N-acetyleneuraminic acid, and 5.3% galactosamine. Most of the carbohydrate was found to be present in the heavy chain, although some was also observed in both forms of the light chain. The factor X activator had no esterase activity toward benzoyl-Phe-Val-Arg-p-nitroanilide or benzoylarginine ethyl ester and was not inhibited by 0.05 M diisopropyl phosphorofluoridate. These data indicate that factor X activator from Russell's viper venom is a highly specific protease composed of one heavy chain and one light chain, and these chains are held together by a disulfide bond(s).

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D002097 C-Reactive Protein A plasma protein that circulates in increased amounts during inflammation and after tissue damage. C-Reactive Protein measured by more sensitive methods often for coronary heart disease risk assessment is referred to as High Sensitivity C-Reactive Protein (hs-CRP). High Sensitivity C-Reactive Protein,hs-CRP,hsCRP,C Reactive Protein,High Sensitivity C Reactive Protein
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005164 Factor IX Storage-stable blood coagulation factor acting in the intrinsic pathway of blood coagulation. Its activated form, IXa, forms a complex with factor VIII and calcium on platelet factor 3 to activate factor X to Xa. Deficiency of factor IX results in HEMOPHILIA B (Christmas Disease). Autoprothrombin II,Christmas Factor,Coagulation Factor IX,Plasma Thromboplastin Component,Blood Coagulation Factor IX,Factor 9,Factor IX Complex,Factor IX Fraction,Factor Nine,Factor IX, Coagulation
D005170 Factor X Storage-stable glycoprotein blood coagulation factor that can be activated to factor Xa by both the intrinsic and extrinsic pathways. A deficiency of factor X, sometimes called Stuart-Prower factor deficiency, may lead to a systemic coagulation disorder. Autoprothrombin III,Coagulation Factor X,Stuart Factor,Stuart-Prower Factor,Blood Coagulation Factor X,Factor 10,Factor Ten,Stuart Prower Factor,Factor X, Coagulation
D006601 Hexoses MONOSACCHARIDES whose molecules contain six carbon atoms, such as GLUCOSE and FRUCTOSE. They generally have the chemical formula C6H12O6. Hexose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000116 Acetylgalactosamine The N-acetyl derivative of galactosamine. 2-Acetamido-2-D-galactopyranose,2-Acetamido-2-Deoxy-D-Galactose,2-Acetamido-2-Deoxygalactose,N-Acetyl-D-Galactosamine,2 Acetamido 2 D galactopyranose,2 Acetamido 2 Deoxy D Galactose,2 Acetamido 2 Deoxygalactose,N Acetyl D Galactosamine
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

W Kisiel, and M A Hermodson, and E W Davie
March 1992, Rinsho byori. The Japanese journal of clinical pathology,
W Kisiel, and M A Hermodson, and E W Davie
December 1979, The Journal of biological chemistry,
W Kisiel, and M A Hermodson, and E W Davie
November 1971, Biochimica et biophysica acta,
W Kisiel, and M A Hermodson, and E W Davie
April 1994, The Journal of biological chemistry,
W Kisiel, and M A Hermodson, and E W Davie
December 1977, Indian journal of biochemistry & biophysics,
W Kisiel, and M A Hermodson, and E W Davie
November 1977, Biochemistry,
W Kisiel, and M A Hermodson, and E W Davie
December 1972, Biochemistry,
W Kisiel, and M A Hermodson, and E W Davie
December 2009, Acta crystallographica. Section F, Structural biology and crystallization communications,
W Kisiel, and M A Hermodson, and E W Davie
October 1996, Toxicon : official journal of the International Society on Toxinology,
Copied contents to your clipboard!