3'-Azido-3'-deoxythymidine-resistant mutants of DNA polymerase beta identified by in vivo selection. 1999

J L Kosa, and J B Sweasy
Yale University School of Medicine, Departments of Therapeutic Radiology and Genetics, New Haven, Connecticut 06520, USA.

We developed an in vivo selection to identify 3'-azido-3'-deoxythymidine (AZT)-resistant mutants of rat DNA polymerase beta (pol beta). The selection utilizes pol beta's ability to substitute for Escherichia coli DNA polymerase I (pol I) in the SC18-12 strain, which lacks active pol I. pol beta allows SC18-12 cells to grow, but they depend on pol beta activity, so inhibition of pol beta by AZT kills them. We screened a library of randomly mutated pol beta cDNA for complementation of the pol I defect in the presence of AZT, and identified AZT-resistant mutants. We purified two enzymes with nonconservative mutations in the palm domain of the polymerase. The substitutions D246V and R253M result in reductions in the steady-state catalytic efficiency (Kcat/Km) of AZT-TP incorporation. The efficiency of dTTP incorporation was unchanged for the D246V enzyme, indicating that the substantial decrease in AZT-TP incorporation is responsible for its drug resistance. The R253M enzyme exhibits significantly higher Km(dTTP) and Kcat(dTTP) values, implying that the incorporation reaction is altered. These are the first pol beta mutants demonstrated to exhibit AZT resistance in vitro. The locations of the Asp-246 and Arg-253 side chains indicate that substrate specificity is influenced by residues distant from the nucleotide-binding pocket.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J L Kosa, and J B Sweasy
January 1991, Journal of virology,
J L Kosa, and J B Sweasy
September 1991, Biochemical and biophysical research communications,
J L Kosa, and J B Sweasy
August 2003, Archives of biochemistry and biophysics,
J L Kosa, and J B Sweasy
June 1994, Biochemical and biophysical research communications,
J L Kosa, and J B Sweasy
January 1991, Somatic cell and molecular genetics,
Copied contents to your clipboard!