Reliability of delta-crystallin as a marker for studies of chick lens induction. 1998

C H Sullivan, and P C Marker, and J M Thorn, and J D Brown
Department of Biology, Grinnell College, IA 50112, USA. SULLIVAC@AC.GRIN.EDU

Induction of a lens by the optic vesicle of the brain was the first demonstration of how tissue interactions could influence cell fate during development. However, recent work with amphibians has shown that the optic vesicle is not the primary inducer of lens formation. Rather, an earlier interaction between anterior neural plate and presumptive lens ectoderm appears to direct lens formation. One problem with many early experiments was the absence of an unambiguous assay for lens formation. Before being able to test whether the revised model of lens induction applies to chicken embryos, we examined the suitability of using delta-crystallin as a marker of lens formation. Although delta-crystallin is the major protein synthesized in the chick lens, one or both of the two delta-crystallin genes found in chickens is transcribed in many non-lens tissues as well. In studies of lens formation where appearance of the delta-crystallin protein is used as a positive assay, synthesis of delta-crystallin outside of the lens could make experiments difficult to interpret. Therefore, polyacrylamide gel electrophoresis, immunoblotting, and immunofluorescence were used to determine whether the delta-crystallin messenger RNA detected in non-lens tissues is translated into protein, as it is in the lens. On Coomassie-blue-stained gels of several tissues from stage-22 embryos, a prominent protein was observed that co-migrated with delta-crystallin. However, on immunoblots, none of the nonlens tissues tested contained detectable levels of delta-crystallin at this stage. By imunofluorescence, delta-crystallin was observed in Rathke's pouch and in a large area of oral ectoderm near Rathke's pouch, yet none of the cells in these non-lens tissues showed the typical elongated morphology of lens fiber cells. When presumptive lens ectoderm or other regions of ectoderm from stage-10 embryos were cultured and tested for lens differentiation, both cell elongation and delta-crystallin synthesis were observed, or neither were observed. The results suggest that delta-crystallin synthesis and cell elongation together serve as useful criteria for assessing a positive lens response.

UI MeSH Term Description Entries
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003459 Crystallins A heterogeneous family of water-soluble structural proteins found in cells of the vertebrate lens. The presence of these proteins accounts for the transparency of the lens. The family is composed of four major groups, alpha, beta, gamma, and delta, and several minor groups, which are classed on the basis of size, charge, immunological properties, and vertebrate source. Alpha, beta, and delta crystallins occur in avian and reptilian lenses, while alpha, beta, and gamma crystallins occur in all other lenses. Lens Proteins,Crystallin,Eye Lens Protein,Lens Protein, Eye,Protein, Eye Lens,Proteins, Lens
D004475 Ectoderm The outer of the three germ layers of an embryo. Apical Ectodermal Ridge,Apical Ectodermal Ridges,Ectodermal Ridge, Apical,Ectoderms
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune

Related Publications

C H Sullivan, and P C Marker, and J M Thorn, and J D Brown
August 1976, Proceedings of the National Academy of Sciences of the United States of America,
C H Sullivan, and P C Marker, and J M Thorn, and J D Brown
March 1973, Experimental eye research,
C H Sullivan, and P C Marker, and J M Thorn, and J D Brown
January 1975, Development, growth & differentiation,
C H Sullivan, and P C Marker, and J M Thorn, and J D Brown
October 1982, Experimental eye research,
C H Sullivan, and P C Marker, and J M Thorn, and J D Brown
September 1975, Experimental eye research,
C H Sullivan, and P C Marker, and J M Thorn, and J D Brown
September 1976, Molecular biology reports,
C H Sullivan, and P C Marker, and J M Thorn, and J D Brown
February 1976, Developmental biology,
C H Sullivan, and P C Marker, and J M Thorn, and J D Brown
May 1974, Experimental eye research,
C H Sullivan, and P C Marker, and J M Thorn, and J D Brown
September 1978, Experimental eye research,
Copied contents to your clipboard!