Ethanol interactions with other cytochrome P450 substrates including drugs, xenobiotics, and carcinogens. 1998

D Djordjević, and J Nikolić, and V Stefanović
Department of Neonatology, University School of Medicine, Nis, Yugoslavia.

Chronic ethanol abuse is associated with increased activity of the microsomal ethanol-oxidizing system. This effect is due primarily to induction by ethanol of a specific cytochrome P450 (CYP2E1) responsible for enhanced oxidation of ethanol and other P450 substrates and, consequently, for metabolic tolerance to these substances. Furthermore, cytochrome 450 induction increases the activation of numerous xenobiotics to toxic metabolites and of chemical carcinogens to reactive metabolites, thereby accelerating their adverse effects. Microsomal enzyme induction has been associated with increased reactive oxygen species production and enhanced lipid peroxidation, as well as with decreased enzymatic and nonenzymatic scavenger activity, providing another possible explanation for ethanol-mediated toxicity. Yet another effect of chronic alcohol abuse is chronic immune system activation, which is the mechanism underlying alcohol-related liver disease. The metabolism of steroids and vitamins is catalyzed by P450 and is altered in chronic alcoholics. This article reviews recent advances in the understanding of ethanol interactions with drugs, toxic agents, and carcinogens, as well as with steroids and vitamins.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D003043 Cocarcinogenesis The combination of two or more different factors in the production of cancer. Cocarcinogeneses
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450

Related Publications

D Djordjević, and J Nikolić, and V Stefanović
January 1997, Environmental science and pollution research international,
D Djordjević, and J Nikolić, and V Stefanović
June 1986, New York state journal of medicine,
D Djordjević, and J Nikolić, and V Stefanović
January 2018, Advances in experimental medicine and biology,
D Djordjević, and J Nikolić, and V Stefanović
January 2015, Frontiers in pharmacology,
D Djordjević, and J Nikolić, and V Stefanović
November 1997, Drug metabolism reviews,
D Djordjević, and J Nikolić, and V Stefanović
July 2019, The Journal of biological chemistry,
D Djordjević, and J Nikolić, and V Stefanović
October 2019, The Journal of biological chemistry,
D Djordjević, and J Nikolić, and V Stefanović
June 1984, Pharmacological reviews,
D Djordjević, and J Nikolić, and V Stefanović
June 1985, Life sciences,
Copied contents to your clipboard!