Ovine arylalkylamine N-acetyltransferase in the pineal and pituitary glands: differences in function and regulation. 1999

J V Fleming, and P Barrett, and S L Coon, and D C Klein, and P J Morgan
Molecular Neuroendocrinology Unit, Rowett Research Institute, Bucksburn, Aberdeen, Scotland, United Kingdom.

The enzyme arylalkylamine N-acetyltransferase (AANAT; EC 2.3.1.87) has been conventionally linked with the biosynthesis of melatonin within the pineal gland and retina. This study establishes that AANAT messenger RNA (mRNA) and functional enzyme occurs within the pars tuberalis (PT) and to a lesser degree within the pars distalis (PD) of the sheep pituitary gland; expression in these tissues is approximately 1/15th (PT) and 1/300th (PD) of that in the ovine pineal gland. AANAT mRNA in the PT appears to be expressed in the same cells as the Mel1a receptor. No evidence was obtained to indicate that either PT or PD cells have the ability to synthesize melatonin, suggesting that this enzyme plays a different functional role in the pituitary. We also found that cAMP regulation of the abundance of AANAT mRNA differs between the PT and pineal gland. Forskolin (10 microM) has no effect on pineal AANAT mRNA levels, yet represses expression in the PT. This suppressive influence could be mediated by ICER (inducible cAMP response early repressor), which is induced by forskolin in both tissues. Although it appears that the specific function and regulation of AANAT in the pituitary gland differ from that in the pineal gland, it seems likely that AANAT may play a role in the broader area of signal transduction through the biotransformation of amines.

UI MeSH Term Description Entries
D008297 Male Males
D008550 Melatonin A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

J V Fleming, and P Barrett, and S L Coon, and D C Klein, and P J Morgan
November 2002, Journal of neuroendocrinology,
J V Fleming, and P Barrett, and S L Coon, and D C Klein, and P J Morgan
September 1984, The Journal of biological chemistry,
J V Fleming, and P Barrett, and S L Coon, and D C Klein, and P J Morgan
February 1987, Journal of neurochemistry,
J V Fleming, and P Barrett, and S L Coon, and D C Klein, and P J Morgan
January 1987, Methods in enzymology,
J V Fleming, and P Barrett, and S L Coon, and D C Klein, and P J Morgan
April 2005, Journal of neurochemistry,
J V Fleming, and P Barrett, and S L Coon, and D C Klein, and P J Morgan
October 1991, Journal of neuroendocrinology,
J V Fleming, and P Barrett, and S L Coon, and D C Klein, and P J Morgan
January 2007, Journal of neuroendocrinology,
J V Fleming, and P Barrett, and S L Coon, and D C Klein, and P J Morgan
April 1993, Journal of neurochemistry,
J V Fleming, and P Barrett, and S L Coon, and D C Klein, and P J Morgan
June 2006, Molecular and cellular endocrinology,
J V Fleming, and P Barrett, and S L Coon, and D C Klein, and P J Morgan
January 2006, Chronobiology international,
Copied contents to your clipboard!