3'-Terminal RNA structures and poly(U) tracts inhibit initiation by a 3'-->5' exonuclease in vitro. 1999

L P Ford, and J Wilusz
Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.

We have previously shown that the presence of a poly(A) tail blocks the activity of a highly efficient 3'-->5' exonuclease in HeLa extracts. Similar activities have been implicated in RNA turnover in vivo. It is not clear, however, what protects poly(A)-non-mRNAs from the action of this enzyme. A stem-loop structure located at the 3'-end of U11 RNA was required to protect this transcript from the exonuclease in vitro. Similar 3' stem-loop structures, or extensive base pairinginvolving the 3'-end, are present on all mature small stable RNAs. The placement of artificial stem-loop structures at the 3'-end also protected RNA substrates, suggesting that RNA structure alone is sufficient to block the initiation of the exonuclease. The placement of RNA structures at internal positions of substrate trans-cripts did not affect the activity of the exonuclease or lead to the accumulation of degradation intermediates. Pol III precursor transcripts contain short poly(U) tracts rather than structure at their 3'-ends. Terminal poly(U) tracts protected RNA substrates from the 3'-->5' exonuclease in a protein-dependent fashion. Although La protein is found associated with the terminal U tracts of pol III precursor transcripts both in vivo and in vitro, La protein was not required for poly(U) to protect RNA substrates from the 3'-->5' exonuclease. In summary, these data reveal a variety of ways RNAs have evolved to protect themselves from this exonuclease.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011072 Poly U A group of uridine ribonucleotides in which the phosphate residues of each uridine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Polyuridylic Acids,Uracil Polynucleotides,Poly(rU),Acids, Polyuridylic,Polynucleotides, Uracil
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D043211 Exodeoxyribonuclease V An ATP-dependent exodeoxyribonuclease that cleaves in either the 5'- to 3'- or the 3'- to 5'-direction to yield 5'-phosphooligonucleotides. It is primarily found in BACTERIA. ATP-Dependent DNase,Exodeoxyribonuclease V, alpha Chain,Exodeoxyribonuclease V, beta Chain,Exodeoxyribonuclease V, gamma Chain,Exonuclease V,RecBC DNase,RecBC Deoxyribonuclease,RecBCD Enzyme,ATP Dependent DNase,Deoxyribonuclease, RecBC

Related Publications

L P Ford, and J Wilusz
June 1993, The Journal of biological chemistry,
L P Ford, and J Wilusz
December 1974, Biochemical and biophysical research communications,
L P Ford, and J Wilusz
November 1972, Nature: New biology,
L P Ford, and J Wilusz
August 1996, Proceedings of the National Academy of Sciences of the United States of America,
L P Ford, and J Wilusz
November 2022, Nucleic acids research,
L P Ford, and J Wilusz
July 1973, Nature: New biology,
Copied contents to your clipboard!