A new antibiotic,, asukamycin, produced by Streptomyces. 1976

S Omura, and C Kitao, and H Tanaka, and R Oiwa, and Y Takahashi

Asukamycin, a new antibiotic, has been isolated from the culture broth of a streptomycete designated as Streptomyces nodosus subsp. asukaensis. The antibiotic inhibits the growth of Gram-positive bacteria including Nocardia asteroides. The empirical formula of antibiotic asukamycin has been proposed as C29H22N2O9 (M.W. 542). An acute toxicity of the antibiotic in mice is LD50 48.5 mg/kg by intraperitoneal injection and it has no effect on mice when it was administered by 450 mg/kg per os.

UI MeSH Term Description Entries
D007928 Lethal Dose 50 The dose amount of poisonous or toxic substance or dose of ionizing radiation required to kill 50% of the tested population. LD50,Dose 50, Lethal
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003048 Coccidiosis Protozoan infection found in animals and man. It is caused by several different genera of COCCIDIA. Besnoitiasis,Besnoitiosis,Besnoitiases,Besnoitioses,Coccidioses
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria

Related Publications

S Omura, and C Kitao, and H Tanaka, and R Oiwa, and Y Takahashi
May 1963, The Journal of antibiotics,
S Omura, and C Kitao, and H Tanaka, and R Oiwa, and Y Takahashi
February 1968, The Journal of antibiotics,
S Omura, and C Kitao, and H Tanaka, and R Oiwa, and Y Takahashi
April 1950, Japanese medical journal,
S Omura, and C Kitao, and H Tanaka, and R Oiwa, and Y Takahashi
September 1986, The Journal of antibiotics,
S Omura, and C Kitao, and H Tanaka, and R Oiwa, and Y Takahashi
January 1983, Folia microbiologica,
S Omura, and C Kitao, and H Tanaka, and R Oiwa, and Y Takahashi
January 1978, Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite naturwissenschaftliche Abteilung: Mikrobiologie der Landwirtschaft der Technologie und des Umweltschutzes,
S Omura, and C Kitao, and H Tanaka, and R Oiwa, and Y Takahashi
January 1976, Zeitschrift fur allgemeine Mikrobiologie,
S Omura, and C Kitao, and H Tanaka, and R Oiwa, and Y Takahashi
September 1970, The Journal of antibiotics,
S Omura, and C Kitao, and H Tanaka, and R Oiwa, and Y Takahashi
December 1985, The Journal of antibiotics,
S Omura, and C Kitao, and H Tanaka, and R Oiwa, and Y Takahashi
April 1954, Antibiotics & chemotherapy (Northfield, Ill.),
Copied contents to your clipboard!