NMR study of relative oxygen binding to the alpha and beta subunits of human adult hemoglobin. 1976

T H Huang, and A G Redfield

NMR spectra of the downfield region of normal adult hemoglobin are reported as a function of oxygenation and temperature. Spectra were run in D2O at pD 7.4. A specially made NMR tube insert allowed precise measurement of the degree of oxygenation and of methemoglobin formation before and after taking the NMR spectrum. Plots of the estimated intensity of the most downfield prominent NMR peak, identified as arising from a deoxy-beta subunit by Davis et al. ((1971) J. Mol. Biol. 60, 101-111), versus the average degree of oxygenation y, measured optically, yield a nearly straight line within experimental error, for samples stripped of organic phosphates and for samples containing 2,3-diphosphoglycerate or inositol hexaphosphate. Intensities of peaks further upfield than this peak, previously attributed to deoxy-alpha subunits, are difficult to measure directly especially for samples containing inositol hexaphosphate. The latter samples show broadening in these alpha peaks as the degree of oxygenation increases. This extra broadening appears to increase with temperature. Linearity of the beta peak intensity with oxygenation is expected if there is no large oxygen affinity difference between alpha and beta subunits. However, the cooperativity of binding, and inaccuracy of the data, make it impossible to make accurate estimates of affinity differences.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010108 Oxyhemoglobins A compound formed by the combination of hemoglobin and oxygen. It is a complex in which the oxygen is bound directly to the iron without causing a change from the ferrous to the ferric state. Oxycobalt Hemoglobin,Oxycobalthemoglobin,Oxyhemoglobin,Hemoglobin, Oxycobalt
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

T H Huang, and A G Redfield
May 1977, The Journal of biological chemistry,
T H Huang, and A G Redfield
September 2006, Journal of computational chemistry,
T H Huang, and A G Redfield
May 1980, The Journal of biological chemistry,
T H Huang, and A G Redfield
September 1987, The Journal of biological chemistry,
T H Huang, and A G Redfield
October 1978, FEBS letters,
T H Huang, and A G Redfield
October 1988, Biochemical and biophysical research communications,
Copied contents to your clipboard!