Effects of nitric oxide synthase inhibitors on systemic hypotension, cytokines and inducible nitric oxide synthase expression and lung injury following endotoxin administration in rats. 1999

D Wang, and J Wei, and K Hsu, and J Jau, and M W Lieu, and T J Chao, and H I Chen
Department of Medical Research, Cheng Hsin General Hospital, Taipei, Republic of China.

Endotoxin shock is characterized by systemic hypotension, hyporeactiveness to vasoconstrictors and acute lung edema. A nitric oxide synthase (NOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA) has been shown to be effective in reversing acute lung injury. In the present study, we evaluated the effects of NOS blockade by different mechanisms on the endotoxin-induced changes. In anesthetized rats, lipopolysaccharide (LPS, Klebsiella pneumoniae) was administered intravenously in a dose of 10 mg/kg. LPS caused sustained systemic hypotension accompanied by an eightfold increase of exhaled NO during an observation period of 4 h. After the experiment, the lung weight was obtained and lung tissues were taken for the determination of mRNA expressions of inducible NOS (iNOS), interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha-(TNF-alpha). Histological examination of the lungs was also performed. In the control group injected with saline solution, mRNA expressions of iNOS, IL-1beta and TNF-alpha were absent. Four hours after LPS, the mRNA expressions of iNOS and IL-1beta were still significantly enhanced, but TNF-alpha was not discernibly expressed. LPS also caused a twofold increase in lung weight. Pathological examination revealed endothelial damage and interstitial edema. Various NOS inhibitors were given 1 h after LPS administration. These agents included Nomega-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg), a constitutive NOS and iNOS inhibitor; S, S'-1,4-phenylene-bis-(1,2-ethanedinyl) bis-isothiourea dihydrobromide (1,4-PBIT, 10 mg/kg), a relatively specific iNOS inhibitor, and dexamethasone (3 mg/kg), an inhibitor of iNOS expression. These NOS inhibitors all effectively reversed the systemic hypotension, reduced the exhaled NO concentration and prevented acute lung injury. The LPS-induced mRNA expressions of iNOS and IL-1beta were also significantly depressed by these NOS inhibitors. Our results suggest that NO production through the iNOS pathway is responsible for endotoxin-induced lung injury. Certain cytokines such as IL-1beta are possibly involved. These changes are minimized by NOS inhibitors through different mechanisms.

UI MeSH Term Description Entries
D007022 Hypotension Abnormally low BLOOD PRESSURE that can result in inadequate blood flow to the brain and other vital organs. Common symptom is DIZZINESS but greater negative impacts on the body occur when there is prolonged depravation of oxygen and nutrients. Blood Pressure, Low,Hypotension, Vascular,Low Blood Pressure,Vascular Hypotension
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001944 Breath Tests Any tests done on exhaled air. Breathalyzer Tests,Breath Test,Breathalyzer Test,Test, Breath,Test, Breathalyzer,Tests, Breath,Tests, Breathalyzer
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D Wang, and J Wei, and K Hsu, and J Jau, and M W Lieu, and T J Chao, and H I Chen
April 2007, Clinical and experimental pharmacology & physiology,
D Wang, and J Wei, and K Hsu, and J Jau, and M W Lieu, and T J Chao, and H I Chen
December 1998, American journal of respiratory and critical care medicine,
D Wang, and J Wei, and K Hsu, and J Jau, and M W Lieu, and T J Chao, and H I Chen
January 1993, Proceedings of the National Academy of Sciences of the United States of America,
D Wang, and J Wei, and K Hsu, and J Jau, and M W Lieu, and T J Chao, and H I Chen
April 2001, Nitric oxide : biology and chemistry,
D Wang, and J Wei, and K Hsu, and J Jau, and M W Lieu, and T J Chao, and H I Chen
May 2000, American journal of physiology. Regulatory, integrative and comparative physiology,
D Wang, and J Wei, and K Hsu, and J Jau, and M W Lieu, and T J Chao, and H I Chen
January 2009, Clinical hemorheology and microcirculation,
D Wang, and J Wei, and K Hsu, and J Jau, and M W Lieu, and T J Chao, and H I Chen
December 2007, Journal of gastroenterology and hepatology,
D Wang, and J Wei, and K Hsu, and J Jau, and M W Lieu, and T J Chao, and H I Chen
March 2006, Free radical biology & medicine,
D Wang, and J Wei, and K Hsu, and J Jau, and M W Lieu, and T J Chao, and H I Chen
October 2009, Journal of Nippon Medical School = Nippon Ika Daigaku zasshi,
D Wang, and J Wei, and K Hsu, and J Jau, and M W Lieu, and T J Chao, and H I Chen
January 1998, Neurological research,
Copied contents to your clipboard!