Temperate coliphage HK022. Clear plaque mutants and preliminary vegetative map. 1976

T S Dhillon, and E K Dhillon

Wild type phage HK022 was mutagenized by N-methyl-N'-nitro-N-nitrosoguanidine to induce clear plaque mutants. A total of 225 clear plaque mutants were isolated and 198 of these were assignable to one or the other of two complementation groups of the corresponding cistrons which have been designated as cI and cII, respectively. Approximately 25% of the c mutants were found to be temperature-sensitive (cts); producing turbid plaques at 32 C and clear plaques at 38 C and above. From complementation tests involving cI and cII mutants, bacteria lysogenic for cII prophage were frequently obtained. Double lysogens harboring a CI and a cII prophage were infrequently found and single lysogens harboring only a cI prophage have not been recovered. Bacterial lysogens harboring a prophage carrying a cts mutation in the cI cistron were readily obtainable. However, such lysogens show a lethal phenotype at 40 C and above, although they appear to be fully viable at 32 C. It is shown that by incubation of lysogens harboring a cts mutant of the cI cistron at 42 C, it is possible to isolate cryptic lysogens which are non-immune but harbor at least one of the phage sus+ alleles. Genetic data involving cI, cII, and two complementing sus mutants of essential genes are presented. From these data the following vegetative map is deduced: sus4--cII-cI-sus3.

UI MeSH Term Description Entries
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D008769 Methylnitronitrosoguanidine A nitrosoguanidine derivative with potent mutagenic and carcinogenic properties. Methylnitrosonitroguanidine,Nitrosomethylnitroguanidine,Nitrosonitromethylguanidine,MNNG,N-Methyl-N'-nitro-N-nitrosoguanidine,N Methyl N' nitro N nitrosoguanidine
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

T S Dhillon, and E K Dhillon
January 1971, Molecular & general genetics : MGG,
T S Dhillon, and E K Dhillon
June 2008, Virology,
T S Dhillon, and E K Dhillon
June 2014, Proceedings of the National Academy of Sciences of the United States of America,
T S Dhillon, and E K Dhillon
January 1977, Virology,
T S Dhillon, and E K Dhillon
May 1970, Virology,
T S Dhillon, and E K Dhillon
November 2004, FEBS letters,
T S Dhillon, and E K Dhillon
April 1993, Journal of molecular biology,
T S Dhillon, and E K Dhillon
May 2011, Molecular genetics and genomics : MGG,
T S Dhillon, and E K Dhillon
March 2008, Journal of biotechnology,
Copied contents to your clipboard!