Effects of ibotenate hippocampal and extrahippocampal destruction on delayed-match and -nonmatch-to-sample behavior in rats. 1999

R E Hampson, and L E Jarrard, and S A Deadwyler
Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157-1083, USA.

The effects of ibotenate lesions of the hippocampus (HIPP) or hippocampus plus collateral damage to extrahippocampal structures (HCX) were investigated in rats trained to criterion on spatial versions of either a delayed-match (DMS) or delayed-nonmatch-to-sample (DNMS) task. After recovery from surgery, animals were retrained at "0" sec delays, then assessed at 0-30 sec delays for 15 d, retrained again at 0 sec delays, and retested for another 25 d on 0-30 sec delays. Pretrained HIPP-lesioned animals showed marked delay-dependent deficits in both tasks that never recovered. Detailed examination of within- and between-trial performance factors, including changes in response preferences, length of previous trial delay, and sequential dependencies, revealed important factors operating in lesioned animals that were either absent or insignificant before the lesion. Pretrained HCX-lesioned animals showed deficits similar to those of HIPP animals, with the noticeable exception of a strong "recency" influence of the previous trial. Another group of HIPP- and HCX-lesioned animals trained on the tasks after the lesion showed reduced impairments of the type described above, suggesting that extrahippocampal structures trained after the lesion can assume the role of the hippocampus to some degree. The findings indicate that both the type of lesion and the previous history of the animal determine the postlesion DMS and DNMS performance of animals suffering damage to the hippocampus and/or related structures.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D008297 Male Males
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018690 Excitatory Amino Acid Agonists Drugs that bind to and activate excitatory amino acid receptors. Amino Acids, Excitatory, Agonists,Glutamate Agonists,Agonists, Excitatory Amino Acid,Amino Acid Agonist, Excitatory,Amino Acid Agonists, Excitatory,EAA Agonist,EAA Agonists,Excitatory Amino Acid Agonist,Glutamate Agonist,Agonist, EAA,Agonist, Glutamate,Agonists, EAA,Agonists, Glutamate

Related Publications

R E Hampson, and L E Jarrard, and S A Deadwyler
January 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R E Hampson, and L E Jarrard, and S A Deadwyler
January 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R E Hampson, and L E Jarrard, and S A Deadwyler
April 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R E Hampson, and L E Jarrard, and S A Deadwyler
May 1998, Progress in neuro-psychopharmacology & biological psychiatry,
R E Hampson, and L E Jarrard, and S A Deadwyler
October 1993, Behavioral neuroscience,
R E Hampson, and L E Jarrard, and S A Deadwyler
December 2001, Neuropharmacology,
R E Hampson, and L E Jarrard, and S A Deadwyler
April 2003, Neuropsychology,
R E Hampson, and L E Jarrard, and S A Deadwyler
January 1990, Neurobiology of aging,
R E Hampson, and L E Jarrard, and S A Deadwyler
October 1975, Behavioral biology,
Copied contents to your clipboard!