Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. 1999

B Berkhout, and M Jebbink, and J Zsíros
Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. b.berkhout@amc.uva.nl

Of the numerous endogenous retroviral elements that are present in the human genome, the abundant HERV-K family is distinct because several members are transcriptionally active and coding for biologically active proteins. A detailed phylogeny of the HERV-K family based on the partial sequence of the reverse transcriptase (RT) gene revealed a high incidence of an intact RT open reading frame within the HML-2 subgroup of HERV-K elements. In this study, we report the cloning of six full-length HML-2 RT genes, of which five contain an uninterrupted open reading frame. The RT enzymes were expressed as glutathione S-transferase fusion proteins in Escherichia coli, and several HERV-K RT enzymes demonstrated polymerase as well as RNase H activity. Several biochemical properties of the RT polymerase were analyzed, including the template requirements and optimal reaction conditions (temperature, type of divalent cation). Inspection of the nucleotide sequence of the HERV-K RT genes demonstrated a mosaic structure, suggesting that a high level of genetic recombination has occurred in this virus family, which is a hallmark of replication by means of reverse transcription. The selective pressure to maintain the RT coding potential is illustrated by the sequence of a particular HERV-K isolate that contains three 1-nucleotide deletions within a small RT segment, thus maintaining the open reading frame. These combined results may suggest that these endogenous RT enzymes still have a biological function. It is possible that the RT activity was involved in the spread of this major class of retroelements by retrotransposition, and in fact it cannot be excluded that this retrovirus group is still mobile. The endogenous RT activity may also have been involved in the shaping of the human genome, e.g., by formation of pseudogenes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames
D016914 Ribonuclease H A ribonuclease that specifically cleaves the RNA moiety of RNA:DNA hybrids. It has been isolated from a wide variety of prokaryotic and eukaryotic organisms as well as RETROVIRUSES. Endoribonuclease H,RNase H,Ribonuclease H, Calf Thymus,RNAase H
D020077 Endogenous Retroviruses Retroviruses that have integrated into the germline (PROVIRUSES) that have lost infectious capability but retained the capability to transpose. ERV,ERVs,Endogenous Retrovirus,HERV,HERVs,Human Endogenous Retrovirus,Human Endogenous Retroviruses,Retroviruses, Endogenous,Endogenous Retrovirus, Human,Endogenous Retroviruses, Human,Retrovirus, Endogenous,Retrovirus, Human Endogenous,Retroviruses, Human Endogenous

Related Publications

B Berkhout, and M Jebbink, and J Zsíros
June 2008, Neoplasia (New York, N.Y.),
B Berkhout, and M Jebbink, and J Zsíros
January 1996, Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association,
B Berkhout, and M Jebbink, and J Zsíros
April 2005, Insect biochemistry and molecular biology,
B Berkhout, and M Jebbink, and J Zsíros
July 2022, Proceedings of the National Academy of Sciences of the United States of America,
B Berkhout, and M Jebbink, and J Zsíros
December 2017, Journal of virology,
B Berkhout, and M Jebbink, and J Zsíros
July 2015, Journal of virology,
B Berkhout, and M Jebbink, and J Zsíros
September 2002, Genomics,
B Berkhout, and M Jebbink, and J Zsíros
October 2001, Journal of virology,
B Berkhout, and M Jebbink, and J Zsíros
January 2000, Doklady biochemistry : proceedings of the Academy of Sciences of the USSR, Biochemistry section,
B Berkhout, and M Jebbink, and J Zsíros
December 1998, Journal of virology,
Copied contents to your clipboard!