Interaction between the negative regulator of splicing element and a 3' splice site: requirement for U1 small nuclear ribonucleoprotein and the 3' splice site branch point/pyrimidine tract. 1999

C R Cook, and M T McNally
Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

The negative regulator of splicing (NRS) from Rous sarcoma virus suppresses viral RNA splicing and is one of several cis elements that account for the accumulation of large amounts of unspliced RNA for use as gag-pol mRNA and progeny virion genomic RNA. The NRS can also inhibit splicing of heterologous introns in vivo and in vitro. Previous data showed that the splicing factors SF2/ASF and U1, U2, and U11 small nuclear ribonucleoproteins (snRNPs) bind the NRS, and a correlation was established between SF2/ASF and U11 binding and activity, suggesting that these factors are important for function. These observations, and the finding that a large spliceosome-like complex (NRS-C) assembles on NRS RNA in nuclear extract, led to the proposal that the NRS is recognized as a minor-class 5' splice site. One model to explain NRS splicing inhibition holds that the NRS interacts nonproductively with and sequesters U2-dependent 3' splice sites. In this study, we provide evidence that the NRS interacts with an adenovirus 3' splice site. The interaction was dependent on the integrity of the branch point and pyrimidine tract of the 3' splice site, and it was sensitive to a mutation that was previously shown to abolish U11 snRNP binding and NRS function. However, further mutational analyses of NRS sequences have identified a U1 binding site that overlaps the U11 site, and the interaction with the 3' splice site correlated with U1, not U11, binding. These results show that the NRS can interact with a 3' splice site and suggest that U1 is of primary importance for NRS splicing inhibition.

UI MeSH Term Description Entries
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000256 Adenoviridae A family of non-enveloped viruses infecting mammals (MASTADENOVIRUS) and birds (AVIADENOVIRUS) or both (ATADENOVIRUS). Infections may be asymptomatic or result in a variety of diseases. Adenoviruses,Ichtadenovirus,Adenovirus,Ichtadenoviruses
D001358 Avian Sarcoma Viruses Group of alpharetroviruses (ALPHARETROVIRUS) producing sarcomata and other tumors in chickens and other fowl and also in pigeons, ducks, and RATS. Avian Sarcoma Virus B77,Chicken Sarcoma Virus B77,Chicken Tumor 1 Virus,Fujinami sarcoma virus,Sarcoma Viruses, Avian,Avian Sarcoma Virus,Fujinami sarcoma viruses,Sarcoma Virus, Avian,Virus, Avian Sarcoma,Viruses, Avian Sarcoma,sarcoma virus, Fujinami,virus, Fujinami sarcoma,viruses, Fujinami sarcoma
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D017412 Ribonucleoprotein, U1 Small Nuclear A nuclear RNA-protein complex that plays a role in RNA processing. In the nucleoplasm, the U1 snRNP along with other small nuclear ribonucleoproteins (U2, U4-U6, and U5) assemble into SPLICEOSOMES that remove introns from pre-mRNA by splicing. The U1 snRNA forms base pairs with conserved sequence motifs at the 5'-splice site and recognizes both the 5'- and 3'-splice sites and may have a fundamental role in aligning the two sites for the splicing reaction. Small Nuclear Ribonucleoproteins, U1,U1 Small Nuclear Ribonucleoproteins,U1 snRNP,Ribonucleoproteins, Small, U1
D019065 Virus Assembly The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE. Viral Assembly,Assembly, Viral,Assembly, Virus

Related Publications

C R Cook, and M T McNally
March 1992, Proceedings of the National Academy of Sciences of the United States of America,
C R Cook, and M T McNally
August 1988, Biochemical and biophysical research communications,
C R Cook, and M T McNally
September 1996, The Journal of biological chemistry,
C R Cook, and M T McNally
December 1991, Molecular and cellular biology,
Copied contents to your clipboard!