Inhibition of homologous recombination by the plasmid MucA'B complex. 1999

C Venderbure, and A Chastanet, and F Boudsocq, and S Sommer, and A Bailone
Institut Curie, Centre Universitaire, F-91405 Orsay, France.

By its functional interaction with a RecA polymer, the mutagenic UmuD'C complex possesses an antirecombination activity. We show here that MucA'B, a functional homolog of the UmuD'C complex, inhibits homologous recombination as well. In F- recipients expressing MucA'B from a Ptac promoter, Hfr x F- recombination decreased with increasing MucA'B concentrations down to 50-fold. In damage-induced pKM101-containing cells expressing MucA'B from the native promoter, recombination between a UV-damaged F lac plasmid and homologous chromosomal DNA decreased 10-fold. Overexpression of MucA'B together with UmuD'C resulted in a synergistic inhibition of recombination. RecA[UmuR] proteins, which are resistant to UmuD'C inhibition of recombination, are inhibited by MucA'B while promoting MucA'B-promoted mutagenesis efficiently. The data suggest that MucA'B and UmuD'C contact a RecA polymer at distinct sites. The MucA'B complex was more active than UmuD'C in promoting UV mutagenesis, yet it did not inhibit recombination more than UmuD'C does. The enhanced mutagenic potential of MucA'B may result from its inherent superior capacity to assist DNA polymerase in trans-lesion synthesis. In the course of this work, we found that the natural plasmid pKM101 expresses around 45,000 MucA and 13,000 MucB molecules per lexA(Def) cell devoid of LexA. These molecular Muc concentrations are far above those of the chromosomally encoded Umu counterparts. Plasmid pKM101 belongs to a family of broad-host-range conjugative plasmids. The elevated levels of the Muc proteins might be required for successful installation of pKM101-like plasmids into a variety of host cells.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013014 SOS Response, Genetics An error-prone mechanism or set of functions for repairing damaged microbial DNA. SOS functions (a concept reputedly derived from the SOS of the international distress signal) are involved in DNA repair and mutagenesis, in cell division inhibition, in recovery of normal physiological conditions after DNA repair, and possibly in cell death when DNA damage is extensive. SOS Response (Genetics),SOS Box,SOS Function,SOS Induction,SOS Region,SOS Repair,SOS Response,SOS System,Box, SOS,Function, SOS,Functions, SOS,Genetics SOS Response,Genetics SOS Responses,Induction, SOS,Inductions, SOS,Region, SOS,Regions, SOS,Repair, SOS,Repairs, SOS,Response, Genetics SOS,Response, SOS,Response, SOS (Genetics),Responses, Genetics SOS,Responses, SOS,Responses, SOS (Genetics),SOS Functions,SOS Inductions,SOS Regions,SOS Repairs,SOS Responses,SOS Responses (Genetics),SOS Responses, Genetics,SOS Systems,System, SOS,Systems, SOS
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

C Venderbure, and A Chastanet, and F Boudsocq, and S Sommer, and A Bailone
January 1987, Gene,
C Venderbure, and A Chastanet, and F Boudsocq, and S Sommer, and A Bailone
October 2006, Genes & development,
C Venderbure, and A Chastanet, and F Boudsocq, and S Sommer, and A Bailone
July 1990, Molecular & general genetics : MGG,
C Venderbure, and A Chastanet, and F Boudsocq, and S Sommer, and A Bailone
December 2001, BioTechniques,
C Venderbure, and A Chastanet, and F Boudsocq, and S Sommer, and A Bailone
March 2020, International journal of molecular sciences,
C Venderbure, and A Chastanet, and F Boudsocq, and S Sommer, and A Bailone
September 2015, Cold Spring Harbor protocols,
C Venderbure, and A Chastanet, and F Boudsocq, and S Sommer, and A Bailone
January 2012, Molecular cell,
C Venderbure, and A Chastanet, and F Boudsocq, and S Sommer, and A Bailone
October 2003, BioTechniques,
C Venderbure, and A Chastanet, and F Boudsocq, and S Sommer, and A Bailone
November 2001, Carcinogenesis,
C Venderbure, and A Chastanet, and F Boudsocq, and S Sommer, and A Bailone
July 2007, Current microbiology,
Copied contents to your clipboard!