The role of actin microfilaments in the down-regulation of the degranulation response in RBL-2H3 mast cells. 1999

L Frigeri, and J R Apgar
Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.

Cross-linking of FcepsilonRI on rat basophilic leukemia (RBL) cells initiates a signaling cascade leading to degranulation of the cells and the release of inflammatory mediators. Inhibitors that disrupt microfilaments, such as latrunculin and cytochalasin D, do not cause any degranulation on their own, but they do enhance FcepsilonRI-mediated degranulation. Dose-response studies show a good correlation between inhibition of actin polymerization and increased degranulation. In RBL cells, latrunculin causes a decrease in basal levels of filamentous actin (F-actin), while cytochalasin D does not. This is particularly evident in the Triton-insoluble pool of F-actin which is highly cross-linked and associated with the plasma membrane. A concentration of 500 nM latrunculin decreases the basal level of Triton-insoluble F-actin by 60-70% and total F-actin levels by 25%. Latrunculin increases both the rate and extent of Ag-induced degranulation while having no effect on pervanadate-induced degranulation. Pervanadate activates the signaling pathways directly and bypasses the cross-linking of the receptor. RBL cells, activated through FcepsilonRI in the presence of latrunculin, show increased phospholipase activity as well as increased tyrosine phosphorylation of Syk and increased tyrosine phosphorylation of the receptor itself by the tyrosine kinase Lyn. This indicates that the very earliest signaling events after receptor cross-linking are enhanced. These results suggest that actin microfilaments may interact, either directly or indirectly, with the receptor itself and that they may regulate the signaling process at the level of receptor phosphorylation. Microfilaments may possibly act by uncoupling Lyn from the cross-linked receptor.

UI MeSH Term Description Entries
D008387 Marine Toxins Toxic or poisonous substances elaborated by marine flora or fauna. They include also specific, characterized poisons or toxins for which there is no more specific heading, like those from poisonous FISHES. Marine Biotoxins,Phycotoxins
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D011161 Porifera The phylum of sponges which are sessile, suspension-feeding, multicellular animals that utilize flagellated cells called choanocytes to circulate water. Most are hermaphroditic. They are probably an early evolutionary side branch that gave rise to no other group of animals. Except for about 150 freshwater species, sponges are marine animals. They are a source of ALKALOIDS; STEROLS; and other complex molecules useful in medicine and biological research. Demospongiae,Sponges (Zoology),Sponge (Zoology),Sponges,Poriferas,Sponge
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response
D006241 Haptens Small antigenic determinants capable of eliciting an immune response only when coupled to a carrier. Haptens bind to antibodies but by themselves cannot elicit an antibody response. Hapten,Contact-Sensitizing Agents,Agents, Contact-Sensitizing,Contact Sensitizing Agents
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012710 Serum Albumin, Bovine Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed) Fetal Bovine Serum,Fetal Calf Serum,Albumin Bovine,Bovine Albumin,Bovine Serum Albumin,Albumin, Bovine,Albumin, Bovine Serum,Bovine Serum, Fetal,Bovine, Albumin,Calf Serum, Fetal,Serum, Fetal Bovine,Serum, Fetal Calf

Related Publications

L Frigeri, and J R Apgar
May 2010, Molecular nutrition & food research,
L Frigeri, and J R Apgar
February 2004, American journal of physiology. Cell physiology,
L Frigeri, and J R Apgar
January 2003, Cell biology international,
L Frigeri, and J R Apgar
March 2020, Micron (Oxford, England : 1993),
L Frigeri, and J R Apgar
April 2011, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
L Frigeri, and J R Apgar
November 2004, Biosensors & bioelectronics,
L Frigeri, and J R Apgar
January 1988, Progress in allergy,
L Frigeri, and J R Apgar
January 2014, Cell biochemistry and function,
Copied contents to your clipboard!