NMR structure of Escherichia coli glutaredoxin 3-glutathione mixed disulfide complex: implications for the enzymatic mechanism. 1999

K Nordstrand, and F slund, and A Holmgren, and G Otting, and K D Berndt
Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77, Stockholm, Sweden.

Glutaredoxins (Grxs) catalyze reversible oxidation/reduction of protein disulfide groups and glutathione-containing mixed disulfide groups via an active site Grx-glutathione mixed disulfide (Grx-SG) intermediate. The NMR solution structure of the Escherichia coli Grx3 mixed disulfide with glutathione (Grx3-SG) was determined using a C14S mutant which traps this intermediate in the redox reaction. The structure contains a thioredoxin fold, with a well-defined binding site for glutathione which involves two intermolecular backbone-backbone hydrogen bonds forming an antiparallel intermolecular beta-bridge between the protein and glutathione. The solution structure of E. coli Grx3-SG also suggests a binding site for a second glutathione in the reduction of the Grx3-SG intermediate, which is consistent with the specificity of reduction observed in Grxs. Molecular details of the structure in relation to the stability of the intermediate and the activity of Grx3 as a reductant of glutathione mixed disulfide groups are discussed. A comparison of glutathione binding in Grx3-SG and ligand binding in other members of the thioredoxin superfamily is presented, which illustrates the highly conserved intermolecular interactions in this protein family.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses

Related Publications

K Nordstrand, and F slund, and A Holmgren, and G Otting, and K D Berndt
February 1994, Journal of molecular biology,
K Nordstrand, and F slund, and A Holmgren, and G Otting, and K D Berndt
October 2000, Journal of molecular biology,
K Nordstrand, and F slund, and A Holmgren, and G Otting, and K D Berndt
May 1979, The Journal of biological chemistry,
K Nordstrand, and F slund, and A Holmgren, and G Otting, and K D Berndt
December 1993, European journal of biochemistry,
K Nordstrand, and F slund, and A Holmgren, and G Otting, and K D Berndt
September 1992, Biochemistry,
K Nordstrand, and F slund, and A Holmgren, and G Otting, and K D Berndt
March 1992, Protein science : a publication of the Protein Society,
K Nordstrand, and F slund, and A Holmgren, and G Otting, and K D Berndt
July 1978, Canadian journal of biochemistry,
K Nordstrand, and F slund, and A Holmgren, and G Otting, and K D Berndt
July 2014, Acta crystallographica. Section D, Biological crystallography,
K Nordstrand, and F slund, and A Holmgren, and G Otting, and K D Berndt
May 1981, Canadian journal of biochemistry,
K Nordstrand, and F slund, and A Holmgren, and G Otting, and K D Berndt
July 2001, Journal of molecular biology,
Copied contents to your clipboard!