Dynamic CT measurement of cerebral blood flow: a validation study. 1999

A Cenic, and D G Nabavi, and R A Craen, and A W Gelb, and T Y Lee
Imaging Research Laboratories, John P. Robarts Research Institute, London, Ontario, Canada.

OBJECTIVE Our objective was to develop a method to correct for the effect of partial volume averaging (PVA) in the CT measurement of contrast enhancement in small arteries, and to validate a dynamic contrast-enhanced CT method for the measurement of regional cerebral blood flow (rCBF). METHODS Contrast-enhanced CT scans of tubes of known inner diameters were obtained to estimate the size-dependent scaling factors (PVSF) due to PVA. The background-subtracted image profiles of the contrast-filled tubes were fitted to gaussian curves, and the standard deviations (SDs) of these curves were correlated with the PVSF of each tube. In the second part of this investigation, 13 studies were performed in six New Zealand white rabbits under normal conditions. Dynamic CT measurements of rCBF, regional cerebral blood volume (rCBV), and regional mean transit time (rMTT) were calculated in the left and right parietal lobes and the basal ganglia. The CT rCBF values were compared with those obtained by the microsphere method, which is the standard of reference. RESULTS We found strong correlations for the SDs of the gaussian curves to the known inner diameters of the tubes and to their size-related PVSF. These correlations demonstrated that the error from PVA in the measurement of arterial enhancement can be corrected without knowledge of the actual size of the artery. The animal studies revealed a mean (+/- SD) rCBF of 73.3 +/- 31.5 mL/100 g per minute, a mean rCBV of 1.93 +/- 0.74 mL/100 g, and a mean rMTT of 1.81 +/- 1.02 seconds. A strong correlation was found between rCBF values derived by the CT and the microsphere methods. CONCLUSIONS We have validated a new dynamic CT method for measuring rCBF. The accuracy of this technique suggests that it can be used as an alternative diagnostic tool to assess the cerebral hemodynamics in experimental and clinical situations.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008297 Male Males
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001810 Blood Volume Volume of circulating BLOOD. It is the sum of the PLASMA VOLUME and ERYTHROCYTE VOLUME. Blood Volumes,Volume, Blood,Volumes, Blood
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D003287 Contrast Media Substances used to allow enhanced visualization of tissues. Radiopaque Media,Contrast Agent,Contrast Agents,Contrast Material,Contrast Materials,Radiocontrast Agent,Radiocontrast Agents,Radiocontrast Media,Agent, Contrast,Agent, Radiocontrast,Agents, Contrast,Agents, Radiocontrast,Material, Contrast,Materials, Contrast,Media, Contrast,Media, Radiocontrast,Media, Radiopaque
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001479 Basal Ganglia Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres. Basal Nuclei,Ganglia, Basal,Basal Nuclear Complex,Ganglion, Basal,Basal Nuclear Complices,Nuclear Complex, Basal,Nuclei, Basal

Related Publications

A Cenic, and D G Nabavi, and R A Craen, and A W Gelb, and T Y Lee
April 1995, Radiology,
A Cenic, and D G Nabavi, and R A Craen, and A W Gelb, and T Y Lee
May 2001, AJNR. American journal of neuroradiology,
A Cenic, and D G Nabavi, and R A Craen, and A W Gelb, and T Y Lee
January 2008, International journal of biomedical imaging,
A Cenic, and D G Nabavi, and R A Craen, and A W Gelb, and T Y Lee
January 1986, Stroke,
A Cenic, and D G Nabavi, and R A Craen, and A W Gelb, and T Y Lee
January 1991, AJNR. American journal of neuroradiology,
A Cenic, and D G Nabavi, and R A Craen, and A W Gelb, and T Y Lee
July 1995, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery,
A Cenic, and D G Nabavi, and R A Craen, and A W Gelb, and T Y Lee
February 1980, AJR. American journal of roentgenology,
A Cenic, and D G Nabavi, and R A Craen, and A W Gelb, and T Y Lee
December 2003, Nihon Hoshasen Gijutsu Gakkai zasshi,
A Cenic, and D G Nabavi, and R A Craen, and A W Gelb, and T Y Lee
February 1999, Ceskoslovenska fysiologie,
A Cenic, and D G Nabavi, and R A Craen, and A W Gelb, and T Y Lee
January 1984, Medical physics,
Copied contents to your clipboard!