Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts. 1976

S Lepke, and H Passow

Varying concentrations of trypsin were sealed into human red cell ghosts and the effects on membrane proteins and sulfate equilibrium exchange were studied. After incubation for 45 min at 37 degrees C, pH 7.2, the following observations were made: above 10 ng/ml the ghosts undergo fragmentation without lysis. Dodecyl sulfate gel electrophoresis shows that the digestion of spectrin and of the protein in band 2.1 (nomenclature of Steck (1974) J. Cell. Biol. 62, 1-19) is nearly complete at 50 ng/ml, that of the protein in band 3 at 25 mug/ml. After digestion at 25 mug/ml, about 60% of the total protein of the membrane is released and the original bands of conventional dodecyl sulfate gel electropherograms of the remaining protein are nearly completely abolished. In their place three new bands appear representing peptides with molecular weights of 58 000, 48 000 and 34 000, respectively. Sometimes a fourth peptide with a molecular weight of approx. 13 000 is also observed. Using a radioactive labeling technique it is shown that the two peptides with the highest molecular weights are derived from the protein in band 3. Labeling with diazo[35S]sulfanilic acid indicates that in addition to the peptides in the described four Coomassie blue-stainable bands, other peptides with molecular weights up to 100 000 are still present in the exhaustively trypsinized ghosts. External trypsin has no effect on the sulfate equilibrium exchange in ghosts while internal trypsin causes inhibition. Inhibition becomes apparent at trypsin concentration exceeding those required to produce a complete digestion of spectrin. It remains incomplete, even at the highest intracellular concentrations which cause maximal effects on all membrane proteins, including the protein in band 3. Under these conditions strong further inhibition can be produced by agents which are known to inhibit anion transport in untreated red cells and ghosts. These agents include the penetrating 1-fluoro-2,4-dinitrobenzene and the nonpenetrating phlorizin, 4-acetamido-4'-isothiocyanato stilbene-2,2'-disulfonic acid, 4,4'-diacetamido stilbene-2,2'-disulfonic acid, and 2-(4'-aminophenyl)-6-methylbenzenethiazol-3',7-disulfonic acid (APMB). Unlike the other nonpenetrating inhibitors APMB is not only capable of inhibiting at the outer but also at the inner membrane surface. Treatment with internal trypsin does not significantly reduce the inhibition by incorporated APMB. The described observations suggest that after exhaustive tryptic digestion of the major membrane proteins, the receptor sites for typical inhibitors of anion transport continue to exert their function.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013425 Sulfanilic Acids Aminobenzenesulfonic acids. Organic acids that are used in the manufacture of dyes and organic chemicals and as reagents. Aminobenzenesulfonic Acids,Anilinesulfonic Acids,Acids, Aminobenzenesulfonic,Acids, Anilinesulfonic,Acids, Sulfanilic
D013431 Sulfates Inorganic salts of sulfuric acid. Sulfate,Sulfates, Inorganic,Inorganic Sulfates

Related Publications

S Lepke, and H Passow
March 1977, The Journal of general physiology,
S Lepke, and H Passow
January 1973, Biochimica et biophysica acta,
S Lepke, and H Passow
April 1989, Thrombosis research,
S Lepke, and H Passow
January 1973, The Journal of membrane biology,
S Lepke, and H Passow
January 1988, International archives of occupational and environmental health,
S Lepke, and H Passow
March 1976, The Journal of physiology,
S Lepke, and H Passow
October 1980, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Copied contents to your clipboard!