[Kinetic and structural characteristics of succinate dehydrogenase components reacting with natural and artificial electron acceptors]. 1976

A D Vinogradov, and E V Gavrikova, and V G Goloveshkina

A new catalitic activity of soluble succinate dehydrogenase, i.e. the reduction of low (20-200 muM) concentration of ferricyanide in the presence of succinate is described. The apparent Km value for the acceptor is about 200 muM. The turnover numbers of the enzyme measured in this reaction, with PMS as an electron acceptor and in the system reconstituted from soluble enzyme and alkali-treated submitochondrial particles (succinate oxidase) are found to be almost the same. The new succinate. ferricyanide reductase activity is very sensitive to oxygen, high (3 mM) ferricyanide concentration and mercaptide-forming agents. When the enzyme is stored under aerobic conditions the loss of this activity occurs according to the first-order kinetics with the same rate constants as the reconstitutive activity decreases. The rate constants both for ferricyanide reductase and reconstitution decay do not depend on pH within the range of 6,5--7,5 (k = 8.10(-2) min-1) and increase dramatically at pH 8,5 (K = 4.10(-1) MIN-1). When these two activities are lost after oxygen exposure the PMS-reductase fall down to about 50% of its original activity. The new ferricyanide reductase is found only in the soluble preparation of the enzyme succinate: cytochrome c reductase, succinate dehydrogenase of submitochondrial particles and reconstituted succinate oxidase do not interact with low concentrations of ferricyanide. The treatment of the enzyme after inactivation by oxygen exposure with sulfide ion--iron--mercaptoethanol mixture followed by Sephadex filtration completely restores the original reconstitutive, ferricyanide and PMS reductase activities. The hypothesis is suggested that succinate dehydrogenase contains at least two red-ox centers reacting with electron acceptors. The first one is located in hydrophylic environment (mitochondrial matrix) being accessible for high concentrations of ferricyanide. The second one (iron--sulfur complex, Hipip-type) is responsible for ferricyanide reductase activity described, being located intramembraneously and involved in the electron transfer between dehydrogenase and the rest of the respiratory chain.

UI MeSH Term Description Entries
D008773 Methylphenazonium Methosulfate Used as an electron carrier in place of the flavine enzyme of Warburg in the hexosemonophosphate system and also in the preparation of SUCCINIC DEHYDROGENASE. Phenazine Methosulfate,5-Methylphenazinium Methyl Sulfate,5 Methylphenazinium Methyl Sulfate,Methosulfate, Methylphenazonium,Methosulfate, Phenazine,Methyl Sulfate, 5-Methylphenazinium,Sulfate, 5-Methylphenazinium Methyl
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005292 Ferricyanides Inorganic salts of the hypothetical acid, H3Fe(CN)6.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013385 Succinate Dehydrogenase A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II. Succinic Oxidase,Fumarate Reductase,Succinic Dehydrogenase,Dehydrogenase, Succinate,Dehydrogenase, Succinic,Oxidase, Succinic,Reductase, Fumarate

Related Publications

A D Vinogradov, and E V Gavrikova, and V G Goloveshkina
January 1977, Biochimica et biophysica acta,
A D Vinogradov, and E V Gavrikova, and V G Goloveshkina
July 1977, Archives of biochemistry and biophysics,
A D Vinogradov, and E V Gavrikova, and V G Goloveshkina
September 1969, Biochimica et biophysica acta,
A D Vinogradov, and E V Gavrikova, and V G Goloveshkina
December 1966, The Journal of biological chemistry,
A D Vinogradov, and E V Gavrikova, and V G Goloveshkina
May 1975, European journal of biochemistry,
A D Vinogradov, and E V Gavrikova, and V G Goloveshkina
January 1987, Ukrainskii biokhimicheskii zhurnal (1978),
A D Vinogradov, and E V Gavrikova, and V G Goloveshkina
January 1978, Biochimie,
A D Vinogradov, and E V Gavrikova, and V G Goloveshkina
August 2010, Biotechnology journal,
A D Vinogradov, and E V Gavrikova, and V G Goloveshkina
December 1975, The Biochemical journal,
A D Vinogradov, and E V Gavrikova, and V G Goloveshkina
July 2023, The Journal of biological chemistry,
Copied contents to your clipboard!