Early induction of Talpha1 alpha-tubulin transcription in neurons of the developing nervous system. 1999

A Gloster, and H El-Bizri, and S X Bamji, and D Rogers, and F D Miller
Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Quebec, Canada.

In this report, we have examined the relationship between the onset of neuronal gene transcription and neuronal development by characterizing expression of the early panneuronal Talpha1 alpha-tubulin promoter in developing neurons. In the peripheral nervous system, detectable expression of a beta-galactosidase transgene driven by the Talpha1 promoter (Talpha1:nlacZ) was coincident with neuronal birth dates, with the exception of sympathetic neuroblasts, which expressed the transgene prior to terminal mitosis. Similarly, in the central nervous system, the onset of beta-galactosidase expression was coincident with neuronal birth dates in most identifiable populations of central neurons. A small subpopulation of transgene-positive cells localized to ventricular zones, but the vast majority was observed in locations consistent with their identification as migrating and/or differentiating neurons. To determine more precisely the temporal relationship between transgene expression and terminal mitosis, we analyzed cultures of cortical progenitors that become postmitotic neurons in vitro. When initially plated, the vast majority of cells consisted of dividing, nestin-positive progenitors. Neurons differentiated from these progenitors as early as 1 day in vitro, as indicated by immunostaining for betaIII-tubulin, a neuron-specific tubulin isotype that is turned on shortly after terminal mitosis. Double-labeling studies showed that Talpha1:nlacZ expression was detectable in the same cells and at approximately the same time as was betaIII-tubulin, indicating that detectable transcription of the Talpha1 alpha-tubulin promoter commences at the time of terminal mitosis, at least in culture. This promoter, therefore, provides a valuable tool for genetic manipulation of early developing neurons in transgenic mice.

UI MeSH Term Description Entries
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D008297 Male Males
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

A Gloster, and H El-Bizri, and S X Bamji, and D Rogers, and F D Miller
March 2002, Molecular and cellular neurosciences,
A Gloster, and H El-Bizri, and S X Bamji, and D Rogers, and F D Miller
January 1981, Oncodevelopmental biology and medicine : the journal of the International Society for Oncodevelopmental Biology and Medicine,
A Gloster, and H El-Bizri, and S X Bamji, and D Rogers, and F D Miller
January 1982, Neurochemistry international,
A Gloster, and H El-Bizri, and S X Bamji, and D Rogers, and F D Miller
January 1982, Neurochemistry international,
A Gloster, and H El-Bizri, and S X Bamji, and D Rogers, and F D Miller
January 1982, Neurochemistry international,
A Gloster, and H El-Bizri, and S X Bamji, and D Rogers, and F D Miller
June 1997, Neuroscience letters,
A Gloster, and H El-Bizri, and S X Bamji, and D Rogers, and F D Miller
June 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Gloster, and H El-Bizri, and S X Bamji, and D Rogers, and F D Miller
June 1999, Microscopy research and technique,
A Gloster, and H El-Bizri, and S X Bamji, and D Rogers, and F D Miller
December 1996, Neuropathology and applied neurobiology,
Copied contents to your clipboard!