Thyroid hormone-dependent regulation of Talpha1 alpha-tubulin during brain development. 2002

Petra I Lorenzo, and Catherine Ménard, and Freda D Miller, and Juan Bernal
Instituto de Investigaciones Biomédicas "Alberto Sols,", CSIC, 28029 Madrid, Spain.

Thyroid hormone (T3) is essential for brain development and most of its actions are exerted at the gene expression level after interaction with nuclear receptors. In particular, genes encoding cytoskeletal proteins are influenced by the thyroidal status. Thyroid hormone is involved in the normal downregulation of the Talpha1 alpha-tubulin gene during postnatal growth. The action of T3 on Talpha1 tubulin expression is complex and is exerted at least at two levels. In cultured cells, T3 induces a transient and fast decrease of Talpha1 mRNA concentration. This effect is enhanced when transcription is blocked by actinomycin D, suggesting that T3 increases mRNA degradation. In transgenic animals T3 affects the expression of beta-galactosidase under control of the Talpha1 promoter in the same way as the endogenous gene, supporting an effect mediated through the Talpha1 promoter. However, the Talpha1 promoter is not regulated by T3 in transfected cells and, therefore, the effects of the hormone in vivo are likely to be indirect. It is concluded that regulation of Talpha1 alpha-tubulin by thyroid hormone is the result of multiple influences including effects on mRNA half life and indirect effects at the promoter level.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Petra I Lorenzo, and Catherine Ménard, and Freda D Miller, and Juan Bernal
November 1991, Journal of neurochemistry,
Petra I Lorenzo, and Catherine Ménard, and Freda D Miller, and Juan Bernal
January 1996, Brain research. Molecular brain research,
Petra I Lorenzo, and Catherine Ménard, and Freda D Miller, and Juan Bernal
August 1997, Endocrine reviews,
Petra I Lorenzo, and Catherine Ménard, and Freda D Miller, and Juan Bernal
July 1984, Developmental biology,
Petra I Lorenzo, and Catherine Ménard, and Freda D Miller, and Juan Bernal
May 1999, Molecular and cellular endocrinology,
Petra I Lorenzo, and Catherine Ménard, and Freda D Miller, and Juan Bernal
December 1985, The EMBO journal,
Petra I Lorenzo, and Catherine Ménard, and Freda D Miller, and Juan Bernal
November 2004, European journal of endocrinology,
Petra I Lorenzo, and Catherine Ménard, and Freda D Miller, and Juan Bernal
October 1993, Biochemical and biophysical research communications,
Petra I Lorenzo, and Catherine Ménard, and Freda D Miller, and Juan Bernal
March 1999, The Journal of comparative neurology,
Petra I Lorenzo, and Catherine Ménard, and Freda D Miller, and Juan Bernal
August 1991, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!