Mass-energy absorption coefficient and backscatter factor ratios for kilovoltage x-ray beams. 1999

C M Ma, and J P Seuntjens
Department of Radiation Oncology, Stanford University School of Medicine, CA 94305-5105, USA. cma@reyes.stanford.edu

For low-energy (up to 150 kV) x-rays, the ratio of mass-energy absorption coefficients for water to air, (mu(en)/rho)w.air, and the backscatter factor B are used in the conversion of air kerma, measured free-in-air, to water kerma on the surface of a water phantom. For clinical radiotherapy, similar conversion factors are needed for the determination of the absorbed dose to biological tissues on (or near) the surface of a human body. We have computed the mu(en)/rho ratios and B factor ratios for different biological tissues including muscle, soft tissue, lung, skin and bone relative to water. The mu(en)/rho ratios were obtained by integrating the respective mass-energy absorption coefficients over the in-air primary photon spectra. We have also calculated the mu(en)/rho ratios at different depths in a water phantom in order to convert the measured in-phantom water kerma to the absorbed dose to various biological tissues. The EGS4/DOSIMETER Monte Carlo code system has been used for the simulation of the energy fluence at different depths in a water phantom irradiated by a kilovoltage x-ray beam of variable beam quality (HVL: 0.1 mm Al-5 mm Cu), field size and source-surface distance (SSD). The same code was also used in the calculation of the B factor ratios, soft tissue to water and bone to water. The results show that the B factor for bone differs from the B factor for water by up to 20% for a 100 kV beam (HVL: 2.65 mm Al) with a 100 cm2 field. On the other hand, the difference in the B factor between water and soft tissue is insignificant (well within 1% generally). This means that the B factors for water may be directly used to convert the 'in-air' water kerma to surface kerma for human soft tissues.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

C M Ma, and J P Seuntjens
May 1995, Medical physics,
C M Ma, and J P Seuntjens
November 2011, Physics in medicine and biology,
C M Ma, and J P Seuntjens
September 2020, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB),
C M Ma, and J P Seuntjens
February 1996, Physics in medicine and biology,
C M Ma, and J P Seuntjens
February 2021, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB),
C M Ma, and J P Seuntjens
April 2011, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB),
C M Ma, and J P Seuntjens
June 2011, Australasian physical & engineering sciences in medicine,
C M Ma, and J P Seuntjens
January 1986, Medical physics,
C M Ma, and J P Seuntjens
October 2018, Physics in medicine and biology,
Copied contents to your clipboard!