On the selection of stopping-power and mass energy-absorption coefficient ratios for high-energy x-ray dosimetry. 1984

J R Cunningham, and R J Schulz

A method for the selection of average stopping-power (L/rho)medair and energy-absorption coefficient (mu en/rho)medair ratios has been developed. The quality of the x-ray beam is characterized by the ratio of ionization chamber readings at depths of 20 and 10 cm in water (TMR)2010. For convenience, a relationship is established between experimental (TMR)2010 and the nominal accelerating potential (MV) of the accelerator. Experimental (TMR)2010 are related to (L/rho)medair and (mu en/rho)medair in a three-step process. First, using experimental and theoretical spectra in the range 60Co to 45 MV, (TMR)2010 were calculated for primary and first-scatter photons, and a graph of experimental versus calculated (TMR)2010 for these same spectra was constructed. Second, (L/rho)medair and (mu en/rho)medair were calculated for a large number of primary spectra [for most of which experimental (TMR)2010 were not available] and a graph constructed that related these quantities and (TMR)2010 calculated as above for this group of spectra. Third, using the graphs from the preceding steps, graphs relating the calculated (L/rho)medair and (mu en/rho)medair with experimental (TMR)2010 were constructed. Data are presented for water, polystyrene, acrylic, graphite, A-150, C-552, Bakelite, and nylon for beams with nominal accelerating potentials in the range 2-45 MV.

UI MeSH Term Description Entries
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations

Related Publications

J R Cunningham, and R J Schulz
January 1986, Medical physics,
J R Cunningham, and R J Schulz
May 1995, Medical physics,
J R Cunningham, and R J Schulz
January 1999, Physics in medicine and biology,
J R Cunningham, and R J Schulz
November 2011, Physics in medicine and biology,
J R Cunningham, and R J Schulz
October 2000, Physics in medicine and biology,
J R Cunningham, and R J Schulz
May 2006, Physics in medicine and biology,
J R Cunningham, and R J Schulz
January 2004, Physics in medicine and biology,
J R Cunningham, and R J Schulz
April 2012, Physics in medicine and biology,
J R Cunningham, and R J Schulz
February 1984, The British journal of radiology,
Copied contents to your clipboard!