Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. 1999

B L Schumacher, and C E Hughes, and K E Kuettner, and B Caterson, and M B Aydelotte
Department of Biochemistry, Rush Medical College at Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA. bshumac@rush.edu

We have previously described a large proteoglycan named superficial zone protein that was isolated and purified from culture medium of superficial slices of bovine articular cartilage. Monoclonal antibodies were raised against superficial zone protein and used as probes in Western blot analyses for immunohistochemical studies both to determine precisely which cells within the joint synthesize the proteoglycan and to isolate a cDNA fragment from a bovine chondrocyte lambdagt11 library that encodes part of the proteoglycan. The cDNA fragment that was obtained with use of monoclonal antibody 6-A-1 encodes the 3' end of the sequence for superficial zone protein. On Western blots, monoclonal antibody 3-A-4 recognized an epitope on native, but not reduced, superficial zone protein, whereas monoclonal antibody 6-A-1 reacted with both native and denatured antigen. The proteoglycan was immunolocalized with monoclonal antibody 3-A-4 in chondrocytes predominantly within the superficial zone of fetal and adult articular cartilage and in some cells of the synovial lining. However, the proteoglycan was not detected in chondrocytes deep in articular cartilage, in nasal septal cartilage, or in synovial stromal cells. The only matrix staining positively for superficial zone protein was at the articular surface bordering the synovial cavity in adult, but not fetal, joints. Isolated chondrocytes and synovial cells showed intracellular binding of monoclonal antibody 3-A-4, and flow-cytometric analysis with the antibody gave the following percentages of immunopositive cells: 37.4, 52.5, 3.4, and 7.5 from chondrocytes from the full-thickness, superficial, and deep zones and from synovial cells, respectively. Thus, both chondrocytes and synovial cells bordering the joint cavity synthesize superficial zone protein and substantiate its usefulness as a phenotypic marker of particular cellular species lining the articular cavity.

UI MeSH Term Description Entries
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002358 Cartilage, Articular A protective layer of firm, flexible cartilage over the articulating ends of bones. It provides a smooth surface for joint movement, protecting the ends of long bones from wear at points of contact. Articular Cartilage,Articular Cartilages,Cartilages, Articular
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005260 Female Females
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell

Related Publications

B L Schumacher, and C E Hughes, and K E Kuettner, and B Caterson, and M B Aydelotte
May 1994, Archives of biochemistry and biophysics,
B L Schumacher, and C E Hughes, and K E Kuettner, and B Caterson, and M B Aydelotte
July 1986, Proceedings of the National Academy of Sciences of the United States of America,
B L Schumacher, and C E Hughes, and K E Kuettner, and B Caterson, and M B Aydelotte
January 1977, Acta rhumatologica Belgica,
B L Schumacher, and C E Hughes, and K E Kuettner, and B Caterson, and M B Aydelotte
December 2013, European journal of oral sciences,
B L Schumacher, and C E Hughes, and K E Kuettner, and B Caterson, and M B Aydelotte
October 1985, Annals of the rheumatic diseases,
B L Schumacher, and C E Hughes, and K E Kuettner, and B Caterson, and M B Aydelotte
April 1998, The Journal of physiology,
B L Schumacher, and C E Hughes, and K E Kuettner, and B Caterson, and M B Aydelotte
November 2002, Matrix biology : journal of the International Society for Matrix Biology,
B L Schumacher, and C E Hughes, and K E Kuettner, and B Caterson, and M B Aydelotte
April 2008, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
B L Schumacher, and C E Hughes, and K E Kuettner, and B Caterson, and M B Aydelotte
February 1971, Beitrage zur Pathologie,
B L Schumacher, and C E Hughes, and K E Kuettner, and B Caterson, and M B Aydelotte
September 1989, Nucleic acids research,
Copied contents to your clipboard!