Role of antioxidant defenses against ethanol-induced damage in cultured rat gastric epithelial cells. 1999

H Hiraishi, and T Shimada, and K J Ivey, and A Terano
Second Department of Internal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi, Japan.

Reactive oxygen species appears to be involved in the pathogenesis of ethanol-induced gastric mucosal injury in vivo. Because ingested ethanol diffuses into the gastric mucosa, targeting both epithelium and endothelium, in the present study we examined the possible protective effect of antioxidants on ethanol damage in gastric epithelial cells and endothelial cells in vitro. Cytotoxicity by ethanol was quantified by measuring 51Cr release. The effects of impairment of the glutathione redox cycle and of inhibition of cellular catalase were examined. The generation of superoxide was assessed by the reduction in cytochrome c. Ethanol caused a time- and dose-dependent increase in 51Cr release from epithelial cells. Incubation of cells with DL-buthionine-(S,R)-sulfoximine, while reducing glutathione production, dose dependently enhanced ethanol-induced injury. 1,3-Bis(chloroethyl)-nitrosourea, while inhibiting glutathione reductase activity, also sensitized cells to ethanol. In contrast, the inhibition of catalase with 3-amino-1,2, 4-triazole did not alter the susceptibility of epithelial cells to ethanol. Ethanol induced damage to endothelial cells in a similar fashion. In endothelial cells, however, neither impairment of the glutathione cycle nor inhibition of catalase influenced ethanol-induced damage. Epithelial cells, when exposed to ethanol, increased superoxide production as a function of ethanol concentration, whereas endothelial cells did not. The glutathione redox cycle, but not cellular catalase, plays a critical role in protecting epithelial cells against ethanol damage, whereas neither antioxidant seems to play a role in protection of endothelial cells. The distinct difference in antioxidant protection against ethanol appears to depend on the capability of each cell to produce cytotoxic oxygen species in response to ethanol exposure.

UI MeSH Term Description Entries
D008297 Male Males
D009245 NADH Dehydrogenase A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1. NADH Cytochrome c Reductase,Diaphorase (NADH Dehydrogenase),NADH (Acceptor) Oxidoreductase,NADH Cytochrome c Oxidoreductase,Dehydrogenase, NADH
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002330 Carmustine A cell-cycle phase nonspecific alkylating antineoplastic agent. It is used in the treatment of brain tumors and various other malignant neoplasms. (From Martindale, The Extra Pharmacopoeia, 30th ed, p462) This substance may reasonably be anticipated to be a carcinogen according to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985). (From Merck Index, 11th ed) BCNU,1,3-Bis(2-Chloroethyl)-1-Nitrosourea,BiCNU,FIVB,N,N'-Bis(2-Chloroethyl)-N-Nitrosourea,Nitrumon
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002860 Chromium Radioisotopes Unstable isotopes of chromium that decay or disintegrate emitting radiation. Cr atoms with atomic weights of 46-49, 51, 55, and 56 are radioactive chromium isotopes. Radioisotopes, Chromium
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

H Hiraishi, and T Shimada, and K J Ivey, and A Terano
June 1990, Gastroenterology,
H Hiraishi, and T Shimada, and K J Ivey, and A Terano
May 1993, Gastroenterologia Japonica,
H Hiraishi, and T Shimada, and K J Ivey, and A Terano
February 1997, European journal of pharmacology,
H Hiraishi, and T Shimada, and K J Ivey, and A Terano
April 1990, The American journal of physiology,
H Hiraishi, and T Shimada, and K J Ivey, and A Terano
December 1991, The American journal of physiology,
H Hiraishi, and T Shimada, and K J Ivey, and A Terano
May 1994, Gastroenterology,
H Hiraishi, and T Shimada, and K J Ivey, and A Terano
October 2007, Planta medica,
H Hiraishi, and T Shimada, and K J Ivey, and A Terano
February 1991, The Italian journal of gastroenterology,
H Hiraishi, and T Shimada, and K J Ivey, and A Terano
January 1986, Digestion,
H Hiraishi, and T Shimada, and K J Ivey, and A Terano
January 2012, TheScientificWorldJournal,
Copied contents to your clipboard!