Comparison of the effects of halothane, isoflurane and methoxyflurane on the electroencephalogram of the horse. 1998

C B Johnson, and P M Taylor
Department of Clinical Veterinary Science, University of Bristol, Langford.

We have investigated in eight ponies the effects of three different end-tidal concentrations of halothane, isoflurane and methoxyflurane on median (F50) and 95% spectral edge (F95) frequencies of the EEG and the second differential (DD) of the middle latency auditory evoked potential (MLAEP). The three concentrations of each agent were chosen to represent approximately the minimum alveolar concentration (MAC), 1.25 MAC and 1.5 MAC for each agent. During halothane anaesthesia, F95 decreased progressively as halothane concentration increased, from mean 13.9 (SD 2.6) at 0.8% to 11.9 (1.1) at 1.2%. DD was lower during anaesthesia with the highest concentration (21 (6.5)) compared with the lowest (27.6 (11.4)). There were no significant changes in F50. During isoflurane anaesthesia, there was a small, but significant increase in F95 between the intermediate and highest concentrations (10.2 (1.5) to 10.8 (1.6)). There were no changes in F50 and DD. Values of F95, F50 and DD at all isoflurane concentrations were similar to those of halothane at the highest concentration. During methoxyflurane anaesthesia, F95 and F50 decreased progressively as methoxyflurane concentration was increased, from 21.3 (0.7) and 6.5 (1), respectively, at 0.26%, to 20.1 (0.6) and 5.6 (0.8), respectively, at 0.39%. DD was lower during anaesthesia with the highest concentration of methoxyflurane (25.7 (7.8)) compared with the lowest (39.7 (20.6)). Values of F95, F50 and DD at all methoxyflurane concentrations were higher than those seen with halothane at the lowest concentration. The different relative positions of the dose-response curves for EEG and MLAEP changes compared with antinociception (MAC) changes suggest differences in the mechanisms of action of these three agents. These differences may explain the incomplete adherence to the Meyer-Overton rule.

UI MeSH Term Description Entries
D007530 Isoflurane A stable, non-explosive inhalation anesthetic, relatively free from significant side effects.
D008733 Methoxyflurane An inhalation anesthetic. Currently, methoxyflurane is rarely used for surgical, obstetric, or dental anesthesia. If so employed, it should be administered with NITROUS OXIDE to achieve a relatively light level of anesthesia, and a neuromuscular blocking agent given concurrently to obtain the desired degree of muscular relaxation. (From AMA Drug Evaluations Annual, 1994, p180) Methofluranum,Anecotan,Penthrane,Pentrane
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018685 Anesthetics, Inhalation Gases or volatile liquids that vary in the rate at which they induce anesthesia; potency; the degree of circulation, respiratory, or neuromuscular depression they produce; and analgesic effects. Inhalation anesthetics have advantages over intravenous agents in that the depth of anesthesia can be changed rapidly by altering the inhaled concentration. Because of their rapid elimination, any postoperative respiratory depression is of relatively short duration. (From AMA Drug Evaluations Annual, 1994, p173) Inhalation Anesthetic,Inhalation Anesthetics,Anesthetic Gases,Anesthetic, Inhalation,Gases, Anesthetic

Related Publications

C B Johnson, and P M Taylor
November 2014, Veterinary anaesthesia and analgesia,
C B Johnson, and P M Taylor
December 1990, The Veterinary clinics of North America. Equine practice,
C B Johnson, and P M Taylor
May 1990, Acta anaesthesiologica Scandinavica,
C B Johnson, and P M Taylor
May 1998, British journal of anaesthesia,
C B Johnson, and P M Taylor
December 1984, American journal of veterinary research,
C B Johnson, and P M Taylor
September 1969, British journal of anaesthesia,
C B Johnson, and P M Taylor
January 1969, Acta anaesthesiologica Scandinavica. Supplementum,
Copied contents to your clipboard!