The conformational and dynamic basis for ligand binding reactivity in hemoglobin Ypsilanti (beta 99 asp-->Tyr): origin of the quaternary enhancement effect. 1999

J Huang, and L J Juszczak, and E S Peterson, and C F Shannon, and M Yang, and S Huang, and G V Vidugiris, and J M Friedman
Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Hemoglobin Ypsilanti (HbY) is a stable tetrameric hemoglobin that binds oxygen with little or no cooperativity and with high affinity [Doyle, M. L., et al. (1992) Proteins: Struct., Funct., Genet. 14, 351-362]. It displays an especially large quaternary enhancement effect. An X-ray crystallographic study [Smith, F. R., et al. (1991) Proteins: Struct., Funct., Genet. 10, 81-91] of the carboxy derivative of this hemoglobin (COHbY) revealed a new quaternary structure that partially resembles the recently described R2 structure [Silva, M. M., et al. (1992) J. Biol. Chem. 267, 17248-17256]. Very little is known about either the solution phase conformations of the liganded and deoxy forms of HbY or the molecular basis for the large quaternary enhancement effect (Doyle et al., 1992). In this study, near-IR absorption, Soret-enhanced Raman, and UV (229 nm) resonance Raman spectroscopies are used to probe the liganded and deoxy derivatives of HbY in solution. Nanosecond time-resolved near-IR absorption measurements are used to expose the relaxation properties of the photoproduct of COHbY. Time-resolved (Soret band) absorption is used to generate the geminate and solvent phase ligand rebinding curves for photodissociated COHbY. The spectroscopic results indicate that COHbY has an R-like conformation with respect to both the proximal heme pocket and the hinge region of the alpha 1 beta 2 interface. The deoxy derivative of HbY has spectroscopic features that are very similar to those observed for species assigned to the deoxy R or half-liganded R conformations of human adult hemoglobin (HbA). The 10 ns to 100 micros relaxation properties of the photoproduct of COHbY are distinctly different from those of HbA in that for HbY, little if any tertiary or quaternary relaxation is observed. The near-absence of relaxation in the HbY photoproduct explains the differences in the geminate and solvent phase CO recombination between HbA and HbY. The impact of the conformational and relaxation properties of HbY on the geminate rebinding process forms the basis of a model that accounts for the large quaternary enhancement effect reported for HbY (Doyle et al., 1992). In addition, the spectroscopic data and the X-ray crystallographic results explain the slow relaxation for HbY and the near-absence of cooperative ligand binding for this protein based on the behavior of the penultimate tyrosines.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006441 Hemoglobin A Normal adult human hemoglobin. The globin moiety consists of two alpha and two beta chains.
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006455 Hemoglobins, Abnormal Hemoglobins characterized by structural alterations within the molecule. The alteration can be either absence, addition or substitution of one or more amino acids in the globin part of the molecule at selected positions in the polypeptide chains. Abnormal Hemoglobins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D013055 Spectrophotometry, Infrared Spectrophotometry in the infrared region, usually for the purpose of chemical analysis through measurement of absorption spectra associated with rotational and vibrational energy levels of molecules. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) IR Spectra,Infrared Spectrophotometry,IR Spectras,Spectra, IR

Related Publications

J Huang, and L J Juszczak, and E S Peterson, and C F Shannon, and M Yang, and S Huang, and G V Vidugiris, and J M Friedman
June 1998, Biochemistry,
J Huang, and L J Juszczak, and E S Peterson, and C F Shannon, and M Yang, and S Huang, and G V Vidugiris, and J M Friedman
January 1991, Proteins,
J Huang, and L J Juszczak, and E S Peterson, and C F Shannon, and M Yang, and S Huang, and G V Vidugiris, and J M Friedman
January 1993, Proteins,
J Huang, and L J Juszczak, and E S Peterson, and C F Shannon, and M Yang, and S Huang, and G V Vidugiris, and J M Friedman
November 1992, Proteins,
J Huang, and L J Juszczak, and E S Peterson, and C F Shannon, and M Yang, and S Huang, and G V Vidugiris, and J M Friedman
January 1984, Hemoglobin,
J Huang, and L J Juszczak, and E S Peterson, and C F Shannon, and M Yang, and S Huang, and G V Vidugiris, and J M Friedman
June 1984, The Journal of biological chemistry,
J Huang, and L J Juszczak, and E S Peterson, and C F Shannon, and M Yang, and S Huang, and G V Vidugiris, and J M Friedman
August 2006, The Journal of biological chemistry,
J Huang, and L J Juszczak, and E S Peterson, and C F Shannon, and M Yang, and S Huang, and G V Vidugiris, and J M Friedman
January 1988, The Journal of biological chemistry,
J Huang, and L J Juszczak, and E S Peterson, and C F Shannon, and M Yang, and S Huang, and G V Vidugiris, and J M Friedman
September 1986, The Biochemical journal,
J Huang, and L J Juszczak, and E S Peterson, and C F Shannon, and M Yang, and S Huang, and G V Vidugiris, and J M Friedman
January 1978, Advances in biophysics,
Copied contents to your clipboard!