Phylogenetic relationships of African killifishes in the genera Aphyosemion and Fundulopanchax inferred from mitochondrial DNA sequences. 1999

W J Murphy, and G E Collier
Department of Biological Sciences, The University of Tulsa, 600 S. College Avenue, Tulsa, Oklahoma, 74104, USA.

We have analyzed the phylogenetic relationships of 52 species representing all defined species groups (J. J. Scheel, 1990, Atlas of Killifishes of the Old World, 448 pp.) of the African aplocheiloid fish genera Aphyosemion and Fundulopanchax in order to examine their interrelationships and to reveal trends of karyotypic evolution. The data set comprised 785 total nucleotides from the mitochondrial 12S rRNA and cytochrome b genes. The molecular-based topologies analyzed by both maximum parsimony and neighbor-joining support the monophyly of most previously defined species groups within these two killifish genera. The genus Aphyosemion is monophyletic except for the nested position of Fundulopanchax kunzi (batesi group; subgenus Raddaella) within this clade, suggesting that this taxon was improperly assigned to Fundulopanchax. The remaining Fundulopanchax species sampled were supported as being monophyletic in most analyses. Relationships among the species groups in both genera were not as strongly supported, suggesting that further data will be required to resolve these relationships. Additional sampling from the 16S rRNA gene allowed further resolution of relationships within Fundulopanchax, more specifically identifying the nonannual scheeli group as the basal lineage of this otherwise annual genus. Chromosomal evolution within Aphyosemion has been episodic, with the evolution of a reduced n = 9-10 metacentric complement having occurred in multiple, independent lineages. Polarity of chromosomal reductions within the elegans species group appears to support previous hypotheses concerning mechanisms of karyotypic change within the genus Aphyosemion.

UI MeSH Term Description Entries
D007695 Killifishes Small oviparous fishes mostly in the family Cyprinodontidae but also some members of families Aplocheilidae, Fundulidae, Profundulidae, and Rivulidae. Some killifishes are used in mosquito control. Killifishes are vertebrate model organisms in various fields, e.g., environmental toxicology and neurobiology, because of their short lifespans, ease of maintenance and large number of eggs produced. Cyprinodon,Cyprinodontidae,Pupfishes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D000349 Africa The continent south of EUROPE, east of the ATLANTIC OCEAN and west of the INDIAN OCEAN.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S

Related Publications

W J Murphy, and G E Collier
September 2001, Molecular phylogenetics and evolution,
W J Murphy, and G E Collier
November 1991, Molecular biology and evolution,
W J Murphy, and G E Collier
December 1994, Molecular phylogenetics and evolution,
W J Murphy, and G E Collier
February 2003, Molecular phylogenetics and evolution,
W J Murphy, and G E Collier
June 1996, Molecular phylogenetics and evolution,
W J Murphy, and G E Collier
November 1991, Molecular biology and evolution,
W J Murphy, and G E Collier
December 2004, Molecular phylogenetics and evolution,
Copied contents to your clipboard!