The growth arrest and downregulation of c-myc transcription induced by ceramide are related events dependent on p21 induction, Rb underphosphorylation and E2F sequestering. 1998

E Alesse, and F Zazzeroni, and A Angelucci, and G Giannini, and L Di Marcotullio, and A Gulino
Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy.

Ceramide is an intracellular lipid mediator generated through the sphingomyelin cycle in response to several extracellular signals. Ceramide has been shown to induce growth inhibition, c-myc downmodulation and apoptosis. In this paper we examined the mechanism by which ceramide induces growth suppression and the role of the G1-CDK/pRb/E2F pathway in this process. The addition of exogenous, cell-permeable C2-ceramide to the Hs 27 human diploid fibroblast cell line resulted in a dose-dependent induction of the p21WAF1/CIP1/Sdi1 kinase inhibitor with reduction of cyclin-D1 associated kinase activity. Furthermore, significant dephosphorylation of pRb was observed, with increased association of pRb and the E2F transcription factor into a transcriptionally inactive complex. Ceramide was also capable of inhibiting the transcriptional activity of a CAT reporter vector driven by E2F binding sites containing c-myc promoter transfected into Hs 27 cells. The requirement of the pRb protein for ceramide-induced c-myc downregulation was supported by the failure of ceramide to inhibit promoter activity in HeLa cells, in which pRb function is abrogated by the presence of the E7 Papilloma virus oncoprotein, and in pRb-deleted SAOS2 AT cells. Ceramide-induced downregulation of the c-myc promoter was restored in SAOS2 #1 cells in which a functional Rb gene was reintroduced. Our studies demonstrate that pRb dephosphorylation, induced by ceramide, is at least partly necessary for c-myc downregulation, and therefore the CDK-Rb-E2F pathway appears to be a target for the ceramide-induced modulation of cell cycle regulated gene transcription.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013110 Sphingosine An amino alcohol with a long unsaturated hydrocarbon chain. Sphingosine and its derivative sphinganine are the major bases of the sphingolipids in mammals. (Dorland, 28th ed) 4-Sphingenine,4 Sphingenine

Related Publications

E Alesse, and F Zazzeroni, and A Angelucci, and G Giannini, and L Di Marcotullio, and A Gulino
November 2000, The EMBO journal,
E Alesse, and F Zazzeroni, and A Angelucci, and G Giannini, and L Di Marcotullio, and A Gulino
March 1999, Oncogene,
E Alesse, and F Zazzeroni, and A Angelucci, and G Giannini, and L Di Marcotullio, and A Gulino
May 2019, Chemico-biological interactions,
E Alesse, and F Zazzeroni, and A Angelucci, and G Giannini, and L Di Marcotullio, and A Gulino
June 2001, Virology,
E Alesse, and F Zazzeroni, and A Angelucci, and G Giannini, and L Di Marcotullio, and A Gulino
November 2012, Oncogene,
E Alesse, and F Zazzeroni, and A Angelucci, and G Giannini, and L Di Marcotullio, and A Gulino
November 1992, Nature,
E Alesse, and F Zazzeroni, and A Angelucci, and G Giannini, and L Di Marcotullio, and A Gulino
January 2000, Biochemistry and cell biology = Biochimie et biologie cellulaire,
E Alesse, and F Zazzeroni, and A Angelucci, and G Giannini, and L Di Marcotullio, and A Gulino
December 1988, Molecular and cellular biology,
E Alesse, and F Zazzeroni, and A Angelucci, and G Giannini, and L Di Marcotullio, and A Gulino
July 1998, Molecular and cellular biology,
E Alesse, and F Zazzeroni, and A Angelucci, and G Giannini, and L Di Marcotullio, and A Gulino
March 2009, Cancer cell,
Copied contents to your clipboard!