Abrogation by c-myc of G1 phase arrest induced by RB protein but not by p53. 1992

D W Goodrich, and W H Lee
Center for Molecular Medicine, University of Texas Health Science Center, San Antonio 78245.

Inactivating mutations of the retinoblastoma gene (RB) are found in a wide variety of tumour cells. Replacement of wild-type RB can suppress the tumorigenicity of some of these cells, suggesting that the RB protein (Rb) may negatively regulate cell growth. As activation of c-myc expression promotes cell proliferation and blocks differentiation, it may positively regulate cell growth. The c-myc protein is localized in the nucleus and can physically associate with RB protein in vitro, hence c-myc may functionally antagonize RB function. Microinjection of Rb in G1 phase reversibly arrests cell-cycle progression. Here we co-inject RB protein with c-myc, EJ-ras, c-fos or c-jun protein. Co-injection of c-myc, but not EJ-ras, c-fos or c-jun, inhibits the ability of Rb to arrest the cell cycle. The c-myc does not inhibit the activity of another tumour supressor, p53 (ref. 12). Thus, c-myc and RB specifically antagonize one another in the cell.

UI MeSH Term Description Entries
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53
D016160 Retinoblastoma Protein Product of the retinoblastoma tumor suppressor gene. It is a nuclear phosphoprotein hypothesized to normally act as an inhibitor of cell proliferation. Rb protein is absent in retinoblastoma cell lines. It also has been shown to form complexes with the adenovirus E1A protein, the SV40 T antigen, and the human papilloma virus E7 protein. Rb Protein,Retinoblastoma Nuclear Phosphoprotein p105-Rb,p105-Rb Protein,Rb Gene Product,Rb1 Gene Product,Retinoblastoma Nuclear Phosphoprotein p105 Rb,p105 Rb Protein
D016193 G1 Phase The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors. First Gap Phase,G1a Phase,G1b Phase,Gap Phase 1,First Gap Phases,G1 Phases,G1a Phases,G1b Phases,Gap Phase, First,Gap Phases, First,Phase 1, Gap,Phase, First Gap,Phase, G1,Phase, G1a,Phase, G1b,Phases, First Gap,Phases, G1,Phases, G1a,Phases, G1b
D016271 Proto-Oncogene Proteins c-myc Basic helix-loop-helix transcription factors encoded by the c-myc genes. They are normally involved in nucleic acid metabolism and in mediating the cellular response to growth factors. Elevated and deregulated (constitutive) expression of c-myc proteins can cause tumorigenesis. L-myc Proteins,N-myc Proteins,c-myc Proteins,myc Proto-Oncogene Proteins,p62(c-myc),Proto-Oncogene Products c-myc,Proto-Oncogene Proteins myc,myc Proto-Oncogene Product p62,p62 c-myc,L myc Proteins,N myc Proteins,Proteins myc, Proto-Oncogene,Proto Oncogene Products c myc,Proto Oncogene Proteins c myc,Proto Oncogene Proteins myc,Proto-Oncogene Proteins, myc,c myc Proteins,myc Proto Oncogene Product p62,myc Proto Oncogene Proteins,myc, Proto-Oncogene Proteins,p62 c myc
D016755 Proto-Oncogene Proteins c-jun Cellular DNA-binding proteins encoded by the c-jun genes (GENES, JUN). They are involved in growth-related transcriptional control. There appear to be three distinct functions: dimerization (with c-fos), DNA-binding, and transcriptional activation. Oncogenic transformation can take place by constitutive expression of c-jun. c-fos-Associated Protein p39,c-jun Proteins,fos-Associated Protein p39,jun B Proteins,jun D Proteins,jun Proto-Oncogene Proteins,p39(c-jun),Proto-Oncogene Products c-jun,Proto-Oncogene Proteins jun,jun Proto-Oncogene Product p39,p39 c-jun,Proto Oncogene Products c jun,Proto Oncogene Proteins c jun,Proto Oncogene Proteins jun,c fos Associated Protein p39,c jun Proteins,fos Associated Protein p39,jun Proto Oncogene Product p39,jun Proto Oncogene Proteins,p39 c jun
D016760 Proto-Oncogene Proteins c-fos Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes. Fos B Protein,Fos-Related Antigen,Fos-Related Antigens,c-fos Protein,c-fos Proteins,fos Proto-Oncogene Protein,fos Proto-Oncogene Proteins,p55(c-fos),Antigens, Fos-Related,FRAs,Proto-Oncogene Products c-fos,Proto-Oncogene Proteins fos,p55 c-fos,Antigen, Fos-Related,Fos Related Antigen,Fos Related Antigens,Protein, c-fos,Protein, fos Proto-Oncogene,Proto Oncogene Products c fos,Proto Oncogene Proteins c fos,Proto Oncogene Proteins fos,Proto-Oncogene Protein, fos,c fos Protein,c fos Proteins,fos Proto Oncogene Protein,fos Proto Oncogene Proteins,p55 c fos

Related Publications

D W Goodrich, and W H Lee
December 1999, Biochemical and biophysical research communications,
D W Goodrich, and W H Lee
November 1995, Molecular and cellular biology,
D W Goodrich, and W H Lee
September 2005, Molecular and cellular biology,
D W Goodrich, and W H Lee
June 1997, Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih,
D W Goodrich, and W H Lee
October 2008, Journal of Korean medical science,
Copied contents to your clipboard!