Translational regulation by Y-box transcription factor: involvement of the major mRNA-associated protein, p50. 1999

V M Evdokimova, and L P Ovchinnikov
Institute of Protein Research, Russian Academy of Sciences, Moscow Region, Russia.

p50, the major core protein of messenger ribonucleoprotein particles (mRNPs), is a universal protein found exclusively in association with different mRNA species in the cytoplasm of somatic mammalian cells. Furthermore, p50 is the most abundant and tightly bound protein within both inactive mRNPs and active mRNPs derived from polysomes, although the latter contain a lower level of p50. Recent experiments have revealed that, depending on the p50 to mRNA ratio, p50 may either act as a repressor or an activator of protein synthesis. On the other hand, p50 exhibits about 98% amino acid sequence identity to mammalian transcription factors that bind specifically to Y-box containing DNA. Thus, it is a counterpart of the Y-box binding proteins which are found in bacteria, plants and animals, exhibiting multiple biological activities ranging from transcriptional regulation of a wide variety of genes to 'masking' mRNA activity in germinal cells. This review summarizes our current knowledge of p50 structure and function. It also discusses the biological roles of p50 and related proteins in gene expression and describes the likely mechanisms of their action.

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

V M Evdokimova, and L P Ovchinnikov
April 1996, Chromosoma,
V M Evdokimova, and L P Ovchinnikov
June 1996, Chemistry & biology,
V M Evdokimova, and L P Ovchinnikov
August 1998, Trends in cell biology,
V M Evdokimova, and L P Ovchinnikov
March 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
V M Evdokimova, and L P Ovchinnikov
August 2013, Animal reproduction science,
V M Evdokimova, and L P Ovchinnikov
February 2016, Physical review. E,
V M Evdokimova, and L P Ovchinnikov
June 1993, The Journal of biological chemistry,
V M Evdokimova, and L P Ovchinnikov
February 2014, Trends in pharmacological sciences,
V M Evdokimova, and L P Ovchinnikov
August 1998, Biochemical Society transactions,
Copied contents to your clipboard!