Genetic diversity of the streptococcal competence (com) gene locus. 1999

A M Whatmore, and V A Barcus, and C G Dowson
Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom. a.m.whatnire@warwick.ac.uk

The com operon of naturally transformable streptococcal species contains three genes, comC, comD, and comE, involved in the regulation of competence. The comC gene encodes a competence-stimulating peptide (CSP) thought to induce competence in the bacterial population at a critical extracellular concentration. The comD and comE genes are believed to encode the transmembrane histidine kinase and response regulator proteins, respectively, of a two-component regulator, with the comD-encoded protein being a receptor for CSP. Here we report on the genetic variability of comC and comD within Streptococcus pneumoniae isolates. Comparative analysis of sequence variations of comC and comD shows that, despite evidence for horizontal gene transfer at this locus and the lack of transformability of many S. pneumoniae strains in the laboratory, there is a clear correlation between the presence of a particular comC allele and the cognate comD allele. These findings effectively rule out the possibility that the presence of noncognate comC and comD alleles may be responsible for the inability to induce competence in many isolates and indicate the importance of a functional com pathway in these isolates. In addition, we describe a number of novel CSPs from disease-associated strains of S. mitis and S. oralis. The CSPs from these isolates are much more closely related to those from S. pneumoniae than to most CSPs previously reported from S. mitis and S. oralis, suggesting that these particular organisms may be a potential source of DNA in recombination events generating the mosaic structures commonly reported in genes of S. pneumoniae that are under strong selective pressure.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000071677 Histidine Kinase A member of the transferase superfamily of proteins. In the activated state, protein-histidine kinase autophosphorylates at a histidine residue, subsequently transferring high-energy phosphoryl groups to an aspartate residue of the response-regulator domain, which results in a conformational shift in the effector domain. Histidine kinases mediate signal transduction in a wide range of processes involving cellular adaptation to environmental stress. Histidine Protein Kinase,Histone H4 Histidine Kinase,Protein Histidine Pros-Kinase,Protein Kinase (Histidine), Pros-Kinase,Protein-Histidine Kinase,Protein-Histidine Pros-Kinase,Protein-Histidine Tele-Kinase,Sensor Histidine Kinase,Histidine Kinase, Sensor,Histidine Pros-Kinase, Protein,Kinase, Histidine,Kinase, Histidine Protein,Kinase, Protein-Histidine,Kinase, Sensor Histidine,Pros-Kinase, Protein Histidine,Pros-Kinase, Protein-Histidine,Protein Histidine Kinase,Protein Histidine Pros Kinase,Protein Histidine Tele Kinase,Protein Kinase, Histidine,Tele-Kinase, Protein-Histidine
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph

Related Publications

A M Whatmore, and V A Barcus, and C G Dowson
February 1997, Molecular microbiology,
A M Whatmore, and V A Barcus, and C G Dowson
July 1988, Journal of bacteriology,
A M Whatmore, and V A Barcus, and C G Dowson
July 2001, Transfusion medicine reviews,
A M Whatmore, and V A Barcus, and C G Dowson
January 1998, Annals of human biology,
A M Whatmore, and V A Barcus, and C G Dowson
August 2006, Journal of clinical microbiology,
A M Whatmore, and V A Barcus, and C G Dowson
January 1997, Microbial drug resistance (Larchmont, N.Y.),
A M Whatmore, and V A Barcus, and C G Dowson
January 2007, PloS one,
A M Whatmore, and V A Barcus, and C G Dowson
October 1985, Biochimica et biophysica acta,
A M Whatmore, and V A Barcus, and C G Dowson
January 1997, American journal of human biology : the official journal of the Human Biology Council,
Copied contents to your clipboard!