Replication protein A (RPA) binding to duplex cisplatin-damaged DNA is mediated through the generation of single-stranded DNA. 1999

S M Patrick, and J J Turchi
Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, USA.

Replication protein A (RPA) is a heterotrimeric protein composed of 70-, 34-, and 14-kDa subunits that has been shown to be required for DNA replication, repair, and homologous recombination. We have previously shown preferential binding of recombinant human RPA (rhRPA) to duplex cisplatin-damaged DNA compared with the control undamaged DNA (Patrick, S. M., and Turchi, J. J. (1998) Biochemistry 37, 8808-8815). Here we assess the binding of rhRPA to DNA containing site-specific cisplatin-DNA adducts. rhRPA is shown to bind 1.5-2-fold better to a duplex 30-base pair substrate containing a single 1,3d(GpXpG) compared with a 1,2d(GpG) cisplatin-DNA intrastrand adduct, consistent with the difference in thermal stability of DNA containing each adduct. Consistent with these data, a 21-base pair DNA substrate containing a centrally located single interstrand cisplatin cross-link resulted in less binding than to the undamaged control DNA. A series of experiments measuring rhRPA binding and concurrent DNA denaturation revealed that rhRPA binds duplex cisplatin-damaged DNA via the generation of single-stranded DNA. Single-strand DNA binding experiments show that rhRPA binds 3-4-fold better to an undamaged 24-base DNA compared with the same substrate containing a single 1,2d(GpG) cisplatin-DNA adduct. These data are consistent with a low affinity interaction of rhRPA with duplex-damaged DNA followed by the generation of single-stranded DNA and then high affinity binding to the undamaged DNA strand.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D051716 Replication Protein A A single-stranded DNA-binding protein that is found in EUKARYOTIC CELLS. It is required for DNA REPLICATION; DNA REPAIR; and GENETIC RECOMBINATION. Replication Factor A,Replication Factor A Single-Stranded DNA-Binding Protein,DNA Replication Factor A,Single-Strand Binding Protein RP-A,Replication Factor A Single Stranded DNA Binding Protein,Single Strand Binding Protein RP A
D018736 DNA Adducts The products of chemical reactions that result in the addition of extraneous chemical groups to DNA. DNA Adduct,Adduct, DNA,Adducts, DNA

Related Publications

S M Patrick, and J J Turchi
January 2000, Nucleic acids symposium series,
S M Patrick, and J J Turchi
November 1995, Proceedings of the National Academy of Sciences of the United States of America,
S M Patrick, and J J Turchi
February 2002, Biochemistry,
S M Patrick, and J J Turchi
November 2021, The EMBO journal,
S M Patrick, and J J Turchi
December 2016, Cell reports,
S M Patrick, and J J Turchi
December 1998, Nucleic acids research,
Copied contents to your clipboard!