RPA Stabilization of Single-Stranded DNA Is Critical for Break-Induced Replication. 2016

Patrick Ruff, and Roberto A Donnianni, and Eleanor Glancy, and Julyun Oh, and Lorraine S Symington
Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.

DNA double-strand breaks (DSBs) are cytotoxic lesions that must be accurately repaired to maintain genome stability. Replication protein A (RPA) plays an important role in homology-dependent repair of DSBs by protecting the single-stranded DNA (ssDNA) intermediates formed by end resection and by facilitating Rad51 loading. We found that hypomorphic mutants of RFA1 that support intra-chromosomal homologous recombination are profoundly defective for repair processes involving long tracts of DNA synthesis, in particular break-induced replication (BIR). The BIR defects of the rfa1 mutants could be partially suppressed by eliminating the Sgs1-Dna2 resection pathway, suggesting that Dna2 nuclease attacks the ssDNA formed during end resection when not fully protected by RPA. Overexpression of Rad51 was also found to suppress the rfa1 BIR defects. We suggest that Rad51 binding to the ssDNA formed by excessive end resection and during D-loop migration can partially compensate for dysfunctional RPA.

UI MeSH Term Description Entries
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D042822 Genomic Instability An increased tendency of the GENOME to acquire MUTATIONS when various processes involved in maintaining and replicating the genome are dysfunctional. Genome Instability,Genome Stability,Genomic Stability,Genome Instabilities,Genome Stabilities,Genomic Instabilities,Genomic Stabilities,Instabilities, Genome,Instabilities, Genomic,Instability, Genome,Instability, Genomic,Stabilities, Genome,Stabilities, Genomic,Stability, Genome,Stability, Genomic
D051135 Rad51 Recombinase A Rec A recombinase found in eukaryotes. Rad51 is involved in DNA REPAIR of double-strand breaks. RAD51 Protein,Recombinase, Rad51
D051716 Replication Protein A A single-stranded DNA-binding protein that is found in EUKARYOTIC CELLS. It is required for DNA REPLICATION; DNA REPAIR; and GENETIC RECOMBINATION. Replication Factor A,Replication Factor A Single-Stranded DNA-Binding Protein,DNA Replication Factor A,Single-Strand Binding Protein RP-A,Replication Factor A Single Stranded DNA Binding Protein,Single Strand Binding Protein RP A

Related Publications

Patrick Ruff, and Roberto A Donnianni, and Eleanor Glancy, and Julyun Oh, and Lorraine S Symington
April 2017, Nucleic acids research,
Patrick Ruff, and Roberto A Donnianni, and Eleanor Glancy, and Julyun Oh, and Lorraine S Symington
May 1999, The Journal of biological chemistry,
Patrick Ruff, and Roberto A Donnianni, and Eleanor Glancy, and Julyun Oh, and Lorraine S Symington
June 2022, Nature communications,
Patrick Ruff, and Roberto A Donnianni, and Eleanor Glancy, and Julyun Oh, and Lorraine S Symington
December 2013, Cold Spring Harbor perspectives in biology,
Patrick Ruff, and Roberto A Donnianni, and Eleanor Glancy, and Julyun Oh, and Lorraine S Symington
January 2021, Nature communications,
Patrick Ruff, and Roberto A Donnianni, and Eleanor Glancy, and Julyun Oh, and Lorraine S Symington
June 2021, Proceedings of the National Academy of Sciences of the United States of America,
Patrick Ruff, and Roberto A Donnianni, and Eleanor Glancy, and Julyun Oh, and Lorraine S Symington
January 2011, PloS one,
Patrick Ruff, and Roberto A Donnianni, and Eleanor Glancy, and Julyun Oh, and Lorraine S Symington
November 2019, BMC cancer,
Patrick Ruff, and Roberto A Donnianni, and Eleanor Glancy, and Julyun Oh, and Lorraine S Symington
August 2010, Cell,
Patrick Ruff, and Roberto A Donnianni, and Eleanor Glancy, and Julyun Oh, and Lorraine S Symington
April 2024, Nature,
Copied contents to your clipboard!