| D008954 |
Models, Biological |
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. |
Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic |
|
| D009415 |
Nerve Net |
A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. |
Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic) |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D013598 |
Systems Theory |
Principles, models, and laws that apply to complex interrelationships and interdependencies of sets of linked components which form a functioning whole, a system. Any system may be composed of components which are systems in their own right (sub-systems), such as several organs within an individual organism. |
General Systems Theory,Queuing Theory,General Systems Theories,Queuing Theories,Systems Theories,Systems Theories, General,Systems Theory, General,Theories, General Systems,Theories, Queuing,Theories, Systems,Theory, General Systems,Theory, Queuing,Theory, Systems |
|
| D017711 |
Nonlinear Dynamics |
The study of systems which respond disproportionately (nonlinearly) to initial conditions or perturbing stimuli. Nonlinear systems may exhibit "chaos" which is classically characterized as sensitive dependence on initial conditions. Chaotic systems, while distinguished from more ordered periodic systems, are not random. When their behavior over time is appropriately displayed (in "phase space"), constraints are evident which are described by "strange attractors". Phase space representations of chaotic systems, or strange attractors, usually reveal fractal (FRACTALS) self-similarity across time scales. Natural, including biological, systems often display nonlinear dynamics and chaos. |
Chaos Theory,Models, Nonlinear,Non-linear Dynamics,Non-linear Models,Chaos Theories,Dynamics, Non-linear,Dynamics, Nonlinear,Model, Non-linear,Model, Nonlinear,Models, Non-linear,Non linear Dynamics,Non linear Models,Non-linear Dynamic,Non-linear Model,Nonlinear Dynamic,Nonlinear Model,Nonlinear Models,Theories, Chaos,Theory, Chaos |
|