Simultaneous optical recording of membrane potential and intracellular calcium from brain slices. 1999

S R Sinha, and P Saggau
Division of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.

Optical recording techniques provide a constantly evolving and increasingly powerful set of tools for investigations of cellular physiology. These techniques rely on the use of optical indicators, molecules that change their optical properties depending on the cellular parameter of interest. In this paper we discuss some of the general considerations involved in recording optical signals from multiple indicators. Specifically, we describe a technique for simultaneously recording transients of membrane potential and intracellular calcium concentration, two parameters that have a very complex interrelationship in neuronal functioning. This technique relies on the use of two fluorescent indicators (the voltage-sensitive dye RH-414 and the calcium-sensitive dye Calcium Orange) that have overlapping excitation spectra but separable emission spectra. This fact, in combination with the use of fast, spatially resolving photodetectors (10 x 10-element photodiode matrices), allows for truly simultaneous recording of these transients from brain slices with high spatial ( approximately 200 x 200 microm with a 10x microscope objective) and temporal ( approximately 500 micros) resolution. Furthermore, the quality of the signals obtained is sufficient to allow for recording of spontaneous synchronized activity such as epileptiform activity induced by the potassium channel blocker 4-aminopyridine. The nature of the signals obtained by these indicators recorded from guinea pig hippocampal slices and some applications of this technique are discussed.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009930 Organic Chemicals A broad class of substances containing carbon and its derivatives. Many of these chemicals will frequently contain hydrogen with or without oxygen, nitrogen, sulfur, phosphorus, and other elements. They exist in either carbon chain or carbon ring form. Organic Chemical,Chemical, Organic,Chemicals, Organic
D011726 Pyridinium Compounds Derivatives of PYRIDINE containing a cation C5H5NH or radical C5H6N. Compounds, Pyridinium
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders

Related Publications

S R Sinha, and P Saggau
October 2005, Journal of electrocardiology,
S R Sinha, and P Saggau
August 2000, Methods (San Diego, Calif.),
S R Sinha, and P Saggau
May 2016, Canadian journal of physiology and pharmacology,
S R Sinha, and P Saggau
May 2000, Journal of cardiovascular electrophysiology,
S R Sinha, and P Saggau
June 1999, Methods (San Diego, Calif.),
Copied contents to your clipboard!