Simultaneous optical mapping of transmembrane potential and intracellular calcium in myocyte cultures. 2000

V G Fast, and R E Ideker
Department of Biomedical Engineering, University of Alabama at Birmingham, 35294, USA. fasst@crml.uab.edu

BACKGROUND Fast spatially resolved measurements of transmembrane potential (Vm) and intracellular calcium (Ca(i)2+) are important for studying mechanisms of arrhythmias and defibrillation. The goals of this work were (1) to develop an optical technique for simultaneous multisite optical recordings of Vm and Ca(i)2+, and (2) to determine the relationship between Vm and Ca(i)2+ during normal impulse propagation in myocyte cultures. RESULTS Monolayers of neonatal rat myocytes were stained with fluorescent dye RH-237 (Vm) and Fluo-3AM (Ca(i)2+). Both dyes were excited at the same wavelength range. The emitted fluorescence was optically separated into components corresponding to changes in Vm and Ca(i)2+ and measured using two 16 x 16 photodiode arrays at a spatial resolution of up to 27.5 microm per diode and sampling rate of 2.5 kHz. The optical setup was adjusted so that there was no optical cross-talk between the two types of measurements, which was validated in experiments involving staining with either RH-237 or Fluo-3. The amplitude of Fluo-3 signals rapidly decreased during experiments due to dye leakage. Dye leakage was substantially reduced by application of 1 mM probenecid, a blocker of organic anion transport, which had no effect on action potential duration and only minor effect on conduction velocity. In double-stained preparations, during regular pacing Ca(i)2+ transients had a rise time of 14.2 +/- 2 msec, and they followed Vm upstrokes with a delay of 5.3 +/- 1 msec (n = 9). Durations of Vm and Ca(i)2+ transients determined at 50% level of signal recovery were 54.6 +/- 10 msec and 136 +/- 8 msec, respectively. Application of 2 microM nifedipine reduced the amplitude and duration of Ca(i)2+ transients without significantly affecting conduction velocity. CONCLUSIONS The results demonstrate feasibility of simultaneous optical recordings of Vm and Ca(i)2+ transients with high spatial and temporal resolution.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011339 Probenecid The prototypical uricosuric agent. It inhibits the renal excretion of organic anions and reduces tubular reabsorption of urate. Probenecid has also been used to treat patients with renal impairment, and, because it reduces the renal tubular excretion of other drugs, has been used as an adjunct to antibacterial therapy. Benecid,Benemid,Benuryl,Pro-Cid,Probecid,Probenecid Weimer
D011726 Pyridinium Compounds Derivatives of PYRIDINE containing a cation C5H5NH or radical C5H6N. Compounds, Pyridinium
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts

Related Publications

V G Fast, and R E Ideker
October 2005, Journal of electrocardiology,
V G Fast, and R E Ideker
August 1988, The American journal of physiology,
V G Fast, and R E Ideker
March 2015, Journal of visualized experiments : JoVE,
V G Fast, and R E Ideker
January 2011, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Copied contents to your clipboard!