Transfer characteristics of neurons in vestibular nuclei of the alert monkey. 1978

U W Buettner, and U Büttner, and V Henn

1. In the alert monkey, 74 neurons in the vestibular nuclei were investigated during sinusoidal rotation about a vertical axis at frequencies between 0.003 and 0.5 Hz. Phase and gain were determined by a fast Fourier analysis program. 2. Phase advance, relative to turntable velocity, was small between 0.05 and 0.5 Hz. At lower frequencies phase advance increased to 45 degrees at 0.007--0.02 Hz, and 90 degrees at 0.003--0.005 Hz. In agreement with the phase characteristics, a gain decrease of -3 dB was determined between 0.007 and 0.02 Hz. Assuming a linear system, time constants of 9.5, 11.9, and 24.5 s were calculated for three different monkeys. 3. Simultaneously recorded nystagmus exhibited similar time constants as the central vestibular neurons for each monkey. 4. Frequency responses of 11 neurons were recorded from the same monkeys while they were under general anesthesia and the time constants were reduced to 4--7 s. This is the range of time constants seen in the peripheral nerve. 5. The longer time constants in the alert state are due to an integration process, which provides a low-frequency compensation, and is thought to be achieved through a feedback loop involving the reticular formation. 6. In the alert and anesthetized state, monkeys were also exposed to velocity trapezoids. Time constants of decay of neuronal activity were in good agreement with the data obtained during sinusoidal stimulation. 7. A transfer function of the primary vestibular afferents is expanded to include the described low-frequency compensation found in central vestibular neurons in the alert animals.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D000768 Anesthesia, General Procedure in which patients are induced into an unconscious state through use of various medications so that they do not feel pain during surgery. Anesthesias, General,General Anesthesia,General Anesthesias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D014726 Vestibular Nuclei The four cellular masses in the floor of the fourth ventricle giving rise to a widely dispersed special sensory system. Included is the superior, medial, inferior, and LATERAL VESTIBULAR NUCLEUS. (From Dorland, 27th ed) Schwalbe Nucleus,Vestibular Nucleus, Medial,Schwalbe's Nucleus,Medial Vestibular Nucleus,Nuclei, Vestibular,Nucleus, Medial Vestibular,Nucleus, Schwalbe,Nucleus, Schwalbe's,Schwalbes Nucleus

Related Publications

U W Buettner, and U Büttner, and V Henn
January 1992, Experimental brain research,
U W Buettner, and U Büttner, and V Henn
December 2002, Journal of neurophysiology,
U W Buettner, and U Büttner, and V Henn
April 2009, Journal of neurophysiology,
U W Buettner, and U Büttner, and V Henn
December 1975, Brain research,
U W Buettner, and U Büttner, and V Henn
April 1977, Experimental brain research,
U W Buettner, and U Büttner, and V Henn
November 1977, Experimental brain research,
U W Buettner, and U Büttner, and V Henn
September 2007, Journal of neurophysiology,
U W Buettner, and U Büttner, and V Henn
January 1982, Experimental brain research,
U W Buettner, and U Büttner, and V Henn
February 1998, Journal of neurophysiology,
U W Buettner, and U Büttner, and V Henn
January 1981, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!