Firing characteristics of vestibular nuclei neurons in the alert monkey after bilateral vestibular neurectomy. 1992

W Waespe, and U Schwarz, and M Wolfensberger
Department of Neurology, University of Zürich, Switzerland.

After destruction of the peripheral vestibular system which is not activated by moving large-field visual stimulation, not only labyrinthine-ocular reflexes but also optokinetic-ocular responses related to the "velocity storage" mechanism are abolished. In the normal monkey optokinetic-ocular responses are reflected in sustained activity changes of central vestibular neurons within the vestibular nuclei. To account for the loss of optokinetic responses after labyrinthectomy, inactivation of central vestibular neurons consequent on the loss of primary vestibular activity is assumed to be of major importance. To test this hypothesis we recorded the neural activity within the vestibular nuclear complex in two chronically prepared Rhesus monkeys during a period from one up to 9 and 12 months after both vestibular nerves had been cut. The discharge characteristics of 829 cells were studied in relation to eye fixation, and to a moving small and large (optokinetic) visual stimulus producing smooth pursuit (SP) eye movements and optokinetic nystagmus (OKN). Units were grouped into different subclasses. After chronic bilateral vestibular neurectomy (BVN) we have found: (1) a rich variety of spontaneously active cells within the vestibular nuclear complex, which--as far as comparison before and after BVN is possible--belong to all subclasses of neurons functionally defined in normal monkey; and (2) no sustained activity changes which are related to the activation of the "velocity storage" mechanism; this is especially true for "pure-vestibular", "vestibular-pause" and "tonic-vestibular-pause" cells in normal monkey which show a "pure", "pause" and "tonic-pause" firing pattern after BVN. Neurons which are modulated by eye position are, however, modulated with the velocity of slow eye movements with comparable sensitivity during SP and OKN. Retinal slip is extremely rarely encoded. The results of the present study do not directly answer the question why the "velocity storage" mechanism is abolished after BVN but they suggest that only a small number of central vestibular cells may be inactivated by neurectomy.

UI MeSH Term Description Entries
D007758 Ear, Inner The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (COCHLEA; VESTIBULAR LABYRINTH; and SEMICIRCULAR CANALS) in the TEMPORAL BONE. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (COCHLEAR DUCT; SACCULE AND UTRICLE; and SEMICIRCULAR DUCTS) forming a continuous space enclosed by EPITHELIUM and connective tissue. These spaces are filled with LABYRINTHINE FLUIDS of various compositions. Labyrinth,Bony Labyrinth,Ear, Internal,Inner Ear,Membranous Labyrinth,Bony Labyrinths,Ears, Inner,Ears, Internal,Inner Ears,Internal Ear,Internal Ears,Labyrinth, Bony,Labyrinth, Membranous,Labyrinths,Labyrinths, Bony,Labyrinths, Membranous,Membranous Labyrinths
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014725 Vestibular Nerve The vestibular part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The vestibular nerve fibers arise from neurons of Scarpa's ganglion and project peripherally to vestibular hair cells and centrally to the VESTIBULAR NUCLEI of the BRAIN STEM. These fibers mediate the sense of balance and head position. Scarpa's Ganglion,Ganglion, Scarpa's,Nerve, Vestibular,Nerves, Vestibular,Scarpa Ganglion,Scarpas Ganglion,Vestibular Nerves

Related Publications

W Waespe, and U Schwarz, and M Wolfensberger
November 1978, Journal of neurophysiology,
W Waespe, and U Schwarz, and M Wolfensberger
January 2007, The European journal of neuroscience,
W Waespe, and U Schwarz, and M Wolfensberger
November 1977, Experimental brain research,
W Waespe, and U Schwarz, and M Wolfensberger
January 1985, Experimental brain research,
W Waespe, and U Schwarz, and M Wolfensberger
December 2002, Journal of neurophysiology,
W Waespe, and U Schwarz, and M Wolfensberger
April 2009, Journal of neurophysiology,
W Waespe, and U Schwarz, and M Wolfensberger
January 1979, Experimental brain research,
W Waespe, and U Schwarz, and M Wolfensberger
December 1975, Brain research,
W Waespe, and U Schwarz, and M Wolfensberger
April 1977, Experimental brain research,
W Waespe, and U Schwarz, and M Wolfensberger
January 2021, Progress in neurobiology,
Copied contents to your clipboard!