Cloning and expression of a prokaryotic sucrose-phosphate synthase gene from the cyanobacterium Synechocystis sp. PCC 6803. 1999

J E Lunn, and G D Price, and R T Furbank
CSIRO Plant Industry, Canberra, ACT, Australia.

Sucrose is one of several low-molecular-weight compounds that cyanobacteria accumulate in response to osmotic stress and which are believed to act as osmoprotectants. The genome of the cyanobacterium Synechocystis sp. PCC 6803 contains a 2163 bp open reading frame (ORF) that shows similarity to genes from higher plants encoding sucrose-phosphate synthase (SPS), the enzyme responsible for sucrose synthesis. The deduced amino acid sequence shows 35-39% identity with known higher-plant SPS sequences. The putative Synechocystis sps gene was cloned from genomic DNA by PCR amplification and expressed as a His6-tagged amino-terminal fusion protein in Escherichia coli. The expressed protein was purified and shown to be a functional SPS enzyme, confirming the identity of the ORF, which is the first sps gene to be cloned from a prokaryotic organism. The Synechocystis SPS has a molecular mass of 81.5 kDa, which is smaller than the typical higher-plant SPS subunit (117-119 kDa), and lacks the phosphorylation site motifs associated with light- and osmotic stress-induced regulation of SPS in higher plants. The enzyme has Km values for UDPG1c and Fru6P of 2.9 mM and 0.22 mM, respectively, with a Vmax of 17 micromol per minute per mg protein and a pH optimum of 8.5. Unlike the higher-plant enzyme, ADPG1c, CDPG1c and GDPG1c can substitute for UDPG1c as the glucosyl donor with Km values of 2.5, 7.2 and 1.8 mM, respectively. The enzyme is activated by Mg2+ but not by G1c6P, and is only weakly inhibited by inorganic phosphate. The purified protein was used to raise a high-titre antiserum, which recognises a low-abundance 81 kDa protein in Synechocystis sp. PCC 6803 extracts. There was no apparent increase in expression of the 81 kDa protein when the cells were exposed to moderate salt stress, and SPS activity was very low in extracts from both unstressed and salt-stressed cells. These results and the lack of evidence for sucrose accumulation in Synechocystis sp. PCC6803 lead to the conclusion that expression of the sps gene plays no obvious role in adaptation to osmotic stress in this species.

UI MeSH Term Description Entries
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011387 Prokaryotic Cells Cells lacking a nuclear membrane so that the nuclear material is either scattered in the cytoplasm or collected in a nucleoid region. Cell, Prokaryotic,Cells, Prokaryotic,Prokaryotic Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005964 Glucosyltransferases Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Glucosyltransferase
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations

Related Publications

J E Lunn, and G D Price, and R T Furbank
January 2003, Journal of experimental botany,
J E Lunn, and G D Price, and R T Furbank
March 2000, Protein science : a publication of the Protein Society,
J E Lunn, and G D Price, and R T Furbank
July 1992, Biochimica et biophysica acta,
J E Lunn, and G D Price, and R T Furbank
October 2018, Microbiology (Reading, England),
J E Lunn, and G D Price, and R T Furbank
October 1995, Journal of bacteriology,
J E Lunn, and G D Price, and R T Furbank
July 1999, Photochemistry and photobiology,
J E Lunn, and G D Price, and R T Furbank
July 2006, Journal of biochemistry and molecular biology,
Copied contents to your clipboard!