Copper-induced expression, cloning, and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC 6803. 1990

L M Briggs, and V L Pecoraro, and L McIntosh
Department of Chemistry, University of Michigan, Ann Arbor 48109.

Plastocyanin can be detected in Synechocystis sp. PCC 6803 when 3 microM copper is added to the growth medium, BG-11. The plastocyanin gene (petE) was cloned from a genomic lambda EMBL 3 library by screening with the petE gene from Anabaena sp. PCC 7937. The Synechocystis 6803 petE gene is present as a single copy and, as deduced from the DNA sequence, encodes a precursor protein of 126 amino acids. The predicted 29 amino acid transit peptide shows substantial homology to the Anabaena 7937 transit peptide, thought to direct the plastocyanin precursor to the thylakoid lumen. Putative promoter sites -16 and -38 base pairs from the start of the petE gene have been identified. The deduced amino acid sequence has the greatest homology (61%) to the green alga Scenedemus obliquus plastocyanin. Despite the lower homology, the copper binding residues and certain aromatic residues remain highly conserved. Northern hybridization analysis indicates that the Synechocystis sp. PCC 6803 petE gene is not transcriptionally regulated since the accumulation of petE mRNA appears to be independent of the copper concentration in the growth media. The possibility of an additional polypeptide needed to facilitate the electron transfer from plastocyanin to P700+ is also discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010970 Plastocyanin A copper-containing plant protein that is a fundamental link in the electron transport chain of green plants during the photosynthetic conversion of light energy by photophosphorylation into the potential energy of chemical bonds. Plastocyanine,Silver Plastocyanin,Plastocyanin, Silver
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

L M Briggs, and V L Pecoraro, and L McIntosh
July 1992, Biochimica et biophysica acta,
L M Briggs, and V L Pecoraro, and L McIntosh
March 2000, Protein science : a publication of the Protein Society,
L M Briggs, and V L Pecoraro, and L McIntosh
January 1998, Journal of molecular biology,
L M Briggs, and V L Pecoraro, and L McIntosh
October 1995, Journal of bacteriology,
L M Briggs, and V L Pecoraro, and L McIntosh
July 1999, Photochemistry and photobiology,
L M Briggs, and V L Pecoraro, and L McIntosh
January 1995, Microbiology (Reading, England),
L M Briggs, and V L Pecoraro, and L McIntosh
January 2004, Methods in molecular biology (Clifton, N.J.),
L M Briggs, and V L Pecoraro, and L McIntosh
February 1994, The Journal of biological chemistry,
Copied contents to your clipboard!