Mechanistic studies examining the efficiency and fidelity of DNA synthesis by the 3TC-resistant mutant (184V) of HIV-1 reverse transcriptase. 1999

J Y Feng, and K S Anderson
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA.

A single amino acid substitution from methionine-184 to valine (M184V) of HIV-1 reverse transcriptase (RT) evokes the 1000-fold 3TC (Lamivudine) resistance by the HIV-1 virus observed in the clinic. The M184V mutant HIV-1 RT was studied to assess its catalytic efficiency during single nucleotide incorporation using a transient kinetic approach. The maximum rate of polymerization (k(pol)), binding affinity (K(d)), and incorporation efficiency (k(pol)/K(d)) were determined for incorporating dCTP and 3TC-TP by wild-type and 3TC-resistant HIV-1 RT. The 3TC-resistant HIV-1 RT showed a similar efficiency of incorporation compared with the wild-type enzyme during DNA-dependent DNA polymerization; however, the incorporation efficiency is reduced 3.5-fold during RNA-dependent polymerization. A dramatic 146- and 117-fold decrease in incorporation efficiency was observed for 3TC-MP incorporation by M184V RT for DNA- and RNA-dependent DNA polymerization, respectively, as compared with wild-type HIV-1 RT. While the k(pol) was slower and the K(d) was weaker for 3TC-TP incorporation by the M184V RT, the decrease in the efficiency of incorporation is primarily due to a substantially reduced binding affinity for the 3TC-TP to the enzyme.DNA (or RNA) complex poised for DNA elongation. The fidelity of M184V RT was also examined to evaluate mispair formation since this mutant has been suggested to exhibit a higher level of fidelity. The results of our studies indicate that there is a maximum 2.4-fold increase in fidelity for M184V RT as compared with wild-type HIV-1 RT. Both the wild-type and 3TC-resistant mutant RT showed higher fidelity using an RNA template as contrasted with the corresponding DNA template. This mechanistic information provides insight into our understanding of the molecular mechanism of 3TC-drug resistance and supports suggestions that increased RT fidelity and decreased fitness of the M184V HIV-1 virus may be factors contributing to the strong antiviral effect of AZT-3TC combination therapy.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D003843 Deoxycytidine Monophosphate Deoxycytidine (dihydrogen phosphate). A deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2'-,3'- or 5- positions. DCMP,Deoxycytidylic Acid,Deoxycytidylic Acids,Acid, Deoxycytidylic,Acids, Deoxycytidylic,Monophosphate, Deoxycytidine
D003845 Deoxycytosine Nucleotides Cytosine nucleotides which contain deoxyribose as the sugar moiety. Deoxycytidine Phosphates,Nucleotides, Deoxycytosine,Phosphates, Deoxycytidine
D003848 Deoxyguanine Nucleotides Guanine nucleotides which contain deoxyribose as the sugar moiety. Deoxyguanosine Phosphates,Nucleotides, Deoxyguanine,Phosphates, Deoxyguanosine
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

J Y Feng, and K S Anderson
March 1996, Science (New York, N.Y.),
J Y Feng, and K S Anderson
August 1997, Nucleic acids research,
J Y Feng, and K S Anderson
November 2003, Bioorganic & medicinal chemistry letters,
J Y Feng, and K S Anderson
November 1988, Science (New York, N.Y.),
J Y Feng, and K S Anderson
January 1997, Science (New York, N.Y.),
J Y Feng, and K S Anderson
January 1997, Science (New York, N.Y.),
J Y Feng, and K S Anderson
January 1997, Science (New York, N.Y.),
Copied contents to your clipboard!