Mechanistic insights into the role of Val75 of HIV-1 reverse transcriptase in misinsertion and mispair extension fidelity of DNA synthesis. 2008

Tania Matamoros, and Baek Kim, and Luis Menéndez-Arias
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

The side chain of Val75 stabilizes the fingers subdomain of the human immunodeficiency virus type 1 reverse transcriptase (RT), while its peptide backbone interacts with the single-stranded DNA template (at nucleotide +1) and with the peptide backbone of Gln151. Specific DNA polymerase activities of mutant RTs bearing amino acid substitutions at position 75 (i.e., V75A, V75F, V75I, V75L, V75M, V75S and V75T) were relatively high. Primer extension experiments carried out in the absence of one deoxyribonucleoside-triphosphate suggested that mutations did not affect the accuracy of the RT, except for V75A, V75F, V75I, and to a lesser extent V75T. The fidelity of RTs bearing mutations V75F and V75I increased 1.8- and 3-fold, respectively, as measured by the M13 lacZ alpha forward mutation assay, while V75A showed 1.4-fold decreased accuracy. Steady- and pre-steady-state kinetics demonstrated that the increased fidelity of V75I and V75F was related to their decreased ability to extend mismatched template-primers, while misincorporation efficiencies were not significantly affected by mutations. The increased mispair extension fidelity of mutant V75I RT could be attributed to the nucleotide affinity loss, observed in reactions with mismatched template-primers. Altogether, these data suggest that Val75 interactions with the 5' template overhang are important determinants of fidelity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Tania Matamoros, and Baek Kim, and Luis Menéndez-Arias
December 1998, European journal of biochemistry,
Tania Matamoros, and Baek Kim, and Luis Menéndez-Arias
February 1990, The Journal of biological chemistry,
Tania Matamoros, and Baek Kim, and Luis Menéndez-Arias
November 1988, Science (New York, N.Y.),
Tania Matamoros, and Baek Kim, and Luis Menéndez-Arias
November 2012, The FEBS journal,
Copied contents to your clipboard!