Influence of polyamines on DNA binding of heat shock and activator protein 1 transcription factors induced by heat shock. 1999

M A Desiderio, and P Dansi, and L Tacchini, and A Bernelli-Zazzera
Istituto di Patologia Generale dell'Università degli Studi di Milano, Centro di Studio sulla Patologia Cellulare del CNR, Milan, Italy.

Polyamine depletion, obtained in FAO cells with specific inhibitors of biosynthetic enzymes, prevents or decreases the accumulation of hsp 70 mRNA following heat shock [Desiderio et al., Hepatology 24 (1996) 150-156]. The present study shows that under conditions of spermidine depletion caused by alpha-difluoromethylornithine, the DNA binding capacity of the transcription factor HSF induced by heat shock undergoes a severe and prompt deactivation. Replenishment of the spermidine pool before heat shock re-establishes the DNA binding activity of HSF and the inducibility of hsp 70 mRNA. Similar to HSF, but with a different time-course, the DNA binding of the transcription factor AP-1 activated by heat shock is also impaired in spermidine-depleted cells and reversed by exogenous spermidine. STAT3 provides an example of a transcription factor slightly activated by heat shock but insensitive to polyamine decrease.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000518 Eflornithine An inhibitor of ORNITHINE DECARBOXYLASE, the rate limiting enzyme of the polyamine biosynthetic pathway. Difluoromethylornithine,alpha-Difluoromethylornithine,DL-alpha-Difluoromethylornithine,Eflornithine Hydrochloride,Eflornithine Monohydrochloride, Monohydrate,MDL-71,782 A,Ornidyl,RMI 71782,Vaniqa,alpha-Difluoromethyl Ornithine,DL alpha Difluoromethylornithine,MDL 71,782 A,MDL71,782 A,Ornithine, alpha-Difluoromethyl,alpha Difluoromethyl Ornithine,alpha Difluoromethylornithine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013095 Spermidine A polyamine formed from putrescine. It is found in almost all tissues in association with nucleic acids. It is found as a cation at all pH values, and is thought to help stabilize some membranes and nucleic acid structures. It is a precursor of spermine.
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015317 Biogenic Polyamines Biogenic amines having more than one amine group. These are long-chain aliphatic compounds that contain multiple amino and/or imino groups. Because of the linear arrangement of positive charge on these molecules, polyamines bind electrostatically to ribosomes, DNA, and RNA. Polyamines, Biogenic

Related Publications

M A Desiderio, and P Dansi, and L Tacchini, and A Bernelli-Zazzera
February 1995, The Journal of biological chemistry,
M A Desiderio, and P Dansi, and L Tacchini, and A Bernelli-Zazzera
July 2018, Molecular and cellular biology,
M A Desiderio, and P Dansi, and L Tacchini, and A Bernelli-Zazzera
January 1986, Nature,
M A Desiderio, and P Dansi, and L Tacchini, and A Bernelli-Zazzera
February 2004, Current opinion in structural biology,
M A Desiderio, and P Dansi, and L Tacchini, and A Bernelli-Zazzera
December 2012, Molecular and cellular biochemistry,
M A Desiderio, and P Dansi, and L Tacchini, and A Bernelli-Zazzera
May 2002, Journal of immunology (Baltimore, Md. : 1950),
M A Desiderio, and P Dansi, and L Tacchini, and A Bernelli-Zazzera
August 2009, Biochemical and biophysical research communications,
M A Desiderio, and P Dansi, and L Tacchini, and A Bernelli-Zazzera
February 2006, Molecular and cellular biology,
M A Desiderio, and P Dansi, and L Tacchini, and A Bernelli-Zazzera
August 2001, Genes & development,
Copied contents to your clipboard!