The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. 2001

S G Ahn, and P C Liu, and K Klyachko, and R I Morimoto, and D J Thiele
Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA.

Eukaryotic heat shock transcription factors (HSF) regulate an evolutionarily conserved stress-response pathway essential for survival against a variety of environmental and developmental stresses. Although the highly similar HSF family members have distinct roles in responding to stress and activating target gene expression, the mechanisms that govern these roles are unknown. Here we identify a loop within the HSF1 DNA-binding domain that dictates HSF isoform specific DNA binding in vitro and preferential target gene activation by HSF family members in both a yeast transcription assay and in mammalian cells. These characteristics of the HSF1 loop region are transposable to HSF2 and sufficient to confer DNA-binding specificity, heat shock inducible HSP gene expression and protection from heat-induced apoptosis in vivo. In addition, the loop suppresses formation of the HSF1 trimer under basal conditions and is required for heat-inducible trimerization in a purified system in vitro, suggesting that this domain is a critical part of the HSF1 heat-stress-sensing mechanism. We propose that this domain defines a signature for HSF1 that constitutes an important determinant for how cells utilize a family of transcription factors to respond to distinct stresses.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000076249 Heat Shock Transcription Factors Heat and cold stress-inducible, transcription factors that bind to inverted 5'-NGAAN-3' pentamer DNA sequences and are regulated by POLY-ADP-RIBOSYLATION. They play essential roles as transcriptional activators of the HEAT-SHOCK RESPONSE by inducing expression of large classes of MOLECULAR CHAPERONES and heat-shock proteins. They also function in DNA REPAIR; transcriptional reactivation of latent HIV-1; and pre-mRNA processing and nuclear export of HSP70 HEAT-SHOCK PROTEINS during heat stress. Heat Stress Transcription Factor,Plant Heat Shock Factor,Heat Shock Factor Protein 1,Heat Shock Factor, Plant,Heat Shock Transcription Factor,Heat Shock Transcription Factor 1,Heat Stress Transcription Factors,Plant Heat Shock Factors
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

S G Ahn, and P C Liu, and K Klyachko, and R I Morimoto, and D J Thiele
February 1995, The Journal of biological chemistry,
S G Ahn, and P C Liu, and K Klyachko, and R I Morimoto, and D J Thiele
January 1994, Science (New York, N.Y.),
S G Ahn, and P C Liu, and K Klyachko, and R I Morimoto, and D J Thiele
September 1994, Nature structural biology,
S G Ahn, and P C Liu, and K Klyachko, and R I Morimoto, and D J Thiele
September 1994, Nature structural biology,
S G Ahn, and P C Liu, and K Klyachko, and R I Morimoto, and D J Thiele
September 2013, Biochimica et biophysica acta,
S G Ahn, and P C Liu, and K Klyachko, and R I Morimoto, and D J Thiele
August 2009, Biochemical and biophysical research communications,
S G Ahn, and P C Liu, and K Klyachko, and R I Morimoto, and D J Thiele
July 2018, Molecular and cellular biology,
S G Ahn, and P C Liu, and K Klyachko, and R I Morimoto, and D J Thiele
March 1996, European journal of biochemistry,
S G Ahn, and P C Liu, and K Klyachko, and R I Morimoto, and D J Thiele
November 2009, The Biochemical journal,
S G Ahn, and P C Liu, and K Klyachko, and R I Morimoto, and D J Thiele
March 1996, Molecular and cellular biology,
Copied contents to your clipboard!