Growth hormone (GH)-releasing hormone (GHRH) and the GH secretagogue (GHS), L692,585, differentially modulate rat pituitary GHS receptor and GHRH receptor messenger ribonucleic acid levels. 1999

R D Kineman, and J Kamegai, and L A Frohman
Department of Medicine, University of Illinois at Chicago, 60612, USA.

The ability of synthetic GH secretagogues (GHSs) to elicit a maximal release of GH in vivo is dependent on an intact GH-releasing hormone (GHRH) signaling system. The role of GHRH in GHS-induced GH release has been attributed primarily to the ability of GHS to release GHRH from hypothalamic neurons. However, GHS also releases GH directly at the pituitary level. Several lines of evidence suggest that GHRH is necessary to maintain pituitary responsiveness to GHS by stimulating GHS receptor (GHS-R) synthesis. To test this hypothesis, male rats (250-290 g) were anesthetized with ketamine/xylazine (which does not alter pulsatile GH secretion) and infused i.v. with a GHRH analog ([des-NH2Tyr1,D-Ala15]hGRF-(1-29)-NH2; 10 microg/h) or saline for 4 h. Serum was analyzed for GH, pituitaries were collected, and GHS-R and GHRH receptor (GHRH-R) messenger RNA (mRNA) levels were determined by RT-PCR. GHRH infusion resulted in a 10-fold increase in circulating GH concentrations that were accompanied by an increase in GHS-R mRNA levels to 200% of those in saline-treated controls (P < 0.01). In contrast, GHRH reduced GHRH-R mRNA levels slightly, but not significantly (P < 0.07). The stimulatory effect of GHRH on GHS-R mRNA levels was independent of somatostatin tone, as pretreatment with somatostatin antiserum did not alter the effectiveness of GHRH infusion. In contrast, blockade of somatostatin actions up-regulated GHRH-R mRNA levels under basal conditions and unmasked the inhibitory effects GHRH on its own receptor mRNA. These observations suggest GHRH-R mRNA is tonically suppressed by somatostatin. The stimulatory effect of GHRH on GHS-R mRNA levels was independent of circulating GH, as GHRH infusion in spontaneous dwarf rats, which do not have immunodetectable GH, increased GHS-R mRNA levels to 150% of those in saline-treated controls (P < 0.05). To determine whether this effect occurred by a direct action on the pituitary, primary cell cultures from normal rat pituitaries were incubated with GHRH (0.01-10 nM) or forskolin (10 microM) for 4 h. These GH secretagogues did not alter GHS-R mRNA levels in vitro. However, GHRH and forskolin reduced GHRH-R mRNA levels by 40% (P < 0.05). To determine whether the synthesis of the GHS-R, like that of the GHRH-R, is negatively mediated by its own ligand, anesthetized rats were infused with the nonpeptidyl secretagogue, L-692,585 (100 microg/h) for 4 h. Neither circulating GH (at 4 h) nor GHRH-R mRNA levels were significantly altered by L-692,585, whereas GHS-R mRNA levels were reduced by 50% (P < 0.05). Taken together, these results indicate that GHRH-induced up-regulation of pituitary GHS-R synthesis in vivo is indirect and independent of both somatostatin and GH. They also demonstrate that GHS-R synthesis, like that of GHRH-R, can be rapidly down-regulated by its own ligand.

UI MeSH Term Description Entries
D008297 Male Males
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001552 Benzazepines Compounds with BENZENE fused to AZEPINES.
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin
D013007 Growth Hormone-Releasing Hormone A peptide of 44 amino acids in most species that stimulates the release and synthesis of GROWTH HORMONE. GHRF (or GRF) is synthesized by neurons in the ARCUATE NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, GHRF stimulates GH release by the SOMATOTROPHS in the PITUITARY GLAND. Growth Hormone-Releasing Factor,Somatocrinin,Somatotropin-Releasing Factor 44,Somatotropin-Releasing Hormone,GHRH 1-44,GRF 1-44,Growth Hormone-Releasing Factor 44,Human Pancreatic Growth Hormone-Releasing Factor,Somatoliberin,hpGRF 44,Growth Hormone Releasing Factor,Growth Hormone Releasing Factor 44,Growth Hormone Releasing Hormone,Somatotropin Releasing Factor 44,Somatotropin Releasing Hormone

Related Publications

R D Kineman, and J Kamegai, and L A Frohman
February 1998, The Journal of clinical endocrinology and metabolism,
R D Kineman, and J Kamegai, and L A Frohman
January 2012, Current pharmaceutical design,
R D Kineman, and J Kamegai, and L A Frohman
April 2001, American journal of physiology. Endocrinology and metabolism,
Copied contents to your clipboard!