Characterization of the CoA ligases of human liver mitochondria catalyzing the activation of short- and medium-chain fatty acids and xenobiotic carboxylic acids. 1999

D A Vessey, and M Kelley, and R S Warren
Liver Study Unit, Department of Veterans' Affairs Medical Center, San Francisco, CA 94121, USA.

Two distinct forms of xenobiotic/medium-chain fatty acid:CoA ligase (XM-ligase) were isolated from human liver mitochondria. They were referred to as HXM-A and HXM-B based on their order of elution from a DEAE-cellulose column. Activity of the two ligases was determined toward 15 different carboxylic acids. HXM-A represented 60-80% of the benzoate activity in the lysate, and kinetic analysis revealed that benzoate was the best substrate (highest V(max)/K(m)). The enzyme also had medium-chain fatty acid:CoA ligase activity. HXM-B had the majority of the hexanoate activity and hexanoate was its best substrate. It was, however, also active toward many xenobiotic carboxylic acids. Comparison of these two human XM-ligases with the previously characterized bovine XM-ligases indicated that they were kinetically distinct. When assayed with benzoic acid as substrate, both HXM-A and HXM-B had an absolute dependence on either Mg(2+) or Mn(2+) for activity. Further, addition of monovalent cation (K(+), Rb(+), or NH(4)(+)) stimulated HXM-A activity by >30-fold and HXM-B activity by 4-fold. For both forms, activity toward straight-chain fatty acids was stimulated less by K(+) than was activity toward benzoate or phenylacetate. A 60 kDa short-chain fatty acid:CoA ligase was also isolated. It had activity toward propionate and butyrate, but not acetate, hexanoate or benzoate. The K(m)(app) values were high but similar for propionate and butyrate (285 microM and 250 microM, respectively) but the V(max)(app) was nearly 6-fold greater with propionate as substrate. While the K(m) values are somewhat high, the enzyme is still more efficient with these substrates than either of the XM-ligases.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D002264 Carboxylic Acids Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic. Carboxylic Acid,Acid, Carboxylic,Acids, Carboxylic
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003066 Coenzyme A Ligases Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1. Acyl CoA Synthetase,Acyl CoA Synthetases,Acyl Coenzyme A Synthetase,Acyl Coenzyme A Synthetases,Coenzyme A Ligase,Coenzyme A Synthetase,Coenzyme A Synthetases,Acid-Thiol Ligases,Co A Ligases,A Ligase, Coenzyme,A Synthetase, Coenzyme,Acid Thiol Ligases,CoA Synthetase, Acyl,CoA Synthetases, Acyl,Ligase, Coenzyme A,Ligases, Acid-Thiol,Ligases, Co A,Ligases, Coenzyme A,Synthetase, Acyl CoA,Synthetase, Coenzyme A,Synthetases, Acyl CoA,Synthetases, Coenzyme A
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

D A Vessey, and M Kelley, and R S Warren
March 1967, The Biochemical journal,
D A Vessey, and M Kelley, and R S Warren
July 2000, Current drug metabolism,
D A Vessey, and M Kelley, and R S Warren
October 1998, Clinical and experimental pharmacology & physiology,
D A Vessey, and M Kelley, and R S Warren
January 1984, Journal of inherited metabolic disease,
D A Vessey, and M Kelley, and R S Warren
June 2021, International journal of molecular sciences,
D A Vessey, and M Kelley, and R S Warren
June 1987, The Journal of biological chemistry,
Copied contents to your clipboard!