Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. 1979

S Ohki, and N Ogino, and S Yamamoto, and O Hayaishi

The highly purified prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes had two still unresolved enzyme activities; the oxygenative cyclization of 8,11,14-eicosatrienoic acid to produce prostaglandin G1 and the conversion of the 15-hydro-peroxide of prostaglandin G1 to a 15-hydroxyl group, producing prostaglandin H1. The latter enzymatic reaction required heme and was stimulated by a variety of compounds, including tryptophan, epinephrine, and guaiacol, but not by glutathione. A peroxidatic dehydrogenation was demonstrated with epinephrine or guaiacol in the presence of various hydroperoxides, including hydrogen peroxide and prostaglandin G1. Higher activity and affinity were observed with the 15-hydroperoxide of eicosapolyenoic acid, especially those with the prostaglandin structure. Both the dehydrogenation of epinephrine or guaiacol and the 15-hydroperoxide reduction of prostaglandin G1 were demonstrated in nearly stoichiometric quantities. With tryptophan, however, such a stoichiometric transformation was not observed. The peroxidase activity as followed with guaiacol and hydrogen peroxide and the tryptophan-stimulated conversion of prostaglandin G1 to H1 were not dissociable as examined by isoelectric focusing, heat treatment, pH profile, and heme specificity. The results suggest that the peroxidase with a broad substrate specificity is an integral part of prostaglandin endoperoxide synthetase which is responsible for the conversion of prostaglandin G1 to H1.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010544 Peroxidases Ovoperoxidase
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D002248 Carbon Monoxide Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed) Monoxide, Carbon
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D006427 Hemin Chloro(7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-porphine-2,18-dipropanoato(4-)-N(21),N(22),N(23),N(24)) ferrate(2-) dihydrogen. Ferriprotoporphyrin,Hematin,Alkaline Hematin D-575,Chlorohemin,Ferrihaem,Ferriheme Chloride,Ferriprotoporphyrin IX,Ferriprotoporphyrin IX Chloride,Panhematin,Protohemin,Protohemin IX,Alkaline Hematin D 575,Chloride, Ferriheme,Chloride, Ferriprotoporphyrin IX,Hematin D-575, Alkaline

Related Publications

S Ohki, and N Ogino, and S Yamamoto, and O Hayaishi
May 1976, The Journal of biological chemistry,
S Ohki, and N Ogino, and S Yamamoto, and O Hayaishi
February 1977, The Journal of biological chemistry,
S Ohki, and N Ogino, and S Yamamoto, and O Hayaishi
March 1979, Biochemical and biophysical research communications,
S Ohki, and N Ogino, and S Yamamoto, and O Hayaishi
May 1977, Biochimica et biophysica acta,
S Ohki, and N Ogino, and S Yamamoto, and O Hayaishi
February 1980, The Journal of biological chemistry,
S Ohki, and N Ogino, and S Yamamoto, and O Hayaishi
October 1981, The Journal of biological chemistry,
S Ohki, and N Ogino, and S Yamamoto, and O Hayaishi
December 1982, The Journal of biological chemistry,
S Ohki, and N Ogino, and S Yamamoto, and O Hayaishi
April 1981, Prostaglandins,
S Ohki, and N Ogino, and S Yamamoto, and O Hayaishi
May 1984, Prostaglandins, leukotrienes, and medicine,
S Ohki, and N Ogino, and S Yamamoto, and O Hayaishi
January 1983, Drug metabolism reviews,
Copied contents to your clipboard!